Skip to main content
Log in

Admissible Measurements and Robust Algorithms for Ptychography

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We study an approach to solving the phase retrieval problem as it arises in a phase-less imaging modality known as ptychography. In ptychography, small overlapping sections of an unknown sample (or signal, say \(x_0\in \mathbb {C}^{d}\)) are illuminated one at a time, often with a physical mask between the sample and light source. The corresponding measurements are the noisy magnitudes of the Fourier transform coefficients resulting from the pointwise product of the mask and the sample. The goal is to recover the original signal from such measurements. The algorithmic framework we study herein relies on first inverting a linear system of equations to recover a fraction of the entries in \(x_0 x_0^*\) and then using non-linear techniques to recover the magnitudes and phases of the entries of \(x_0\). Thus, this paper’s contributions are three-fold. First, focusing on the linear part, it expands the theory studying which measurement schemes (i.e., masks, shifts of the sample) yield invertible linear systems, including an analysis of the conditioning of the resulting systems. Second, it analyzes a class of improved magnitude recovery algorithms and, third, it proposes and analyzes algorithms for phase recovery in the ptychographic setting where large shifts—up to \(50\%\) the size of the mask—are permitted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The difficulty of moving the illumination apparatus at a scale equal to the desired optical resolution is another reason taking \(P = [d]_0\) is a cumbersome assumption.

  2. Notice that this will force A, the matrix representing \(\mathcal {A}\), to be singular. We expand on this later.

  3. For reference, we remark that \({{\,\mathrm{circ}\,}}^s(g_m^k) \in \mathbb {C}^{d \times {\overline{d}}}\) and \({{\,\mathrm{circ}\,}}(R_{{\overline{d}}} \mathcal {T}_s g_m^k) \in \mathbb {C}^{{\overline{d}}\times d}\).

  4. By V/W, where \(W \subseteq V\), we mean \(V \cap W^\perp \).

  5. Here, and in the remainder of this section, we emphasize that all indices of objects in \(\mathbb {C}^{d}\) and \(\mathbb {C}^{d \times d}\) are taken modulo d.

  6. We remark that this definition and the recovery algorithm are very obviously extensible to the use of \(T_{\delta , s}\) instead of \(T_\delta \). In fact, this is a restriction, if we consider in (40) that \(T_{\delta , s} \subseteq T_\delta \). The definition, therefore, of a \((T_{\delta , s}, d)\)-covering, is made by analogy to (40).

  7. Here, we use the substitution \(\eta {||}{{\mathbf {x}}_0}{||}_2 = \frac{{||}{X - X_0}{||}_F}{{||}{{\mathbf {x}}_0}{||}_2}\).

References

  1. Alexeev, B., Bandeira, A.S., Fickus, M., Mixon, D.G.: Phase retrieval with polarization. SIAM J. Imaging Sci. 7(1), 35–66 (2014)

    Article  Google Scholar 

  2. Allen, J.: Short term spectral analysis, synthesis, and modification by discrete fourier transform. IEEE Trans. Acoust. Speech Signal Process. 25(3), 235–238 (1977). ISSN 0096-3518. 10.1109/TASSP.1977.1162950

  3. Balan, R.: On signal reconstruction from its spectrogram. In: 2010 44th Annual Conference on Information Sciences and Systems (CISS), pp. 1–4. IEEE (2010)

  4. Balan, R., Casazza, P., Edidin, D.: On signal reconstruction without phase. Appl. Comput. Harmon. Anal. 20(3), 345–356 (2006)

    Article  MathSciNet  Google Scholar 

  5. Balan, R., Bodmann, B.G., Casazza, P.G., Edidin, D.: Painless reconstruction from magnitudes of frame coefficients. J. Fourier Anal. Appl. 15(4), 488–501 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bauschke, H., Combettes, P., Luke, D.: Hybrid projection-reflection method for phase retrieval. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 20(6), 1025–1034 (2003)

    Article  Google Scholar 

  7. Bauschke, H.H., Combettes, P.L., Luke, D.R.: Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 19(7), 1334–1345 (2002)

    Article  MathSciNet  Google Scholar 

  8. Bendory, T., Eldar, Y.C.: Phase retrieval from STFT measurements via non-convex optimization. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4770–4774 (2017). https://doi.org/10.1109/ICASSP.2017.7953062

  9. Bendory, T., Sidorenko, P., Eldar, Y.C.: On the uniqueness of frog methods. IEEE Signal Process. Lett. 24(5), 722–726 (2017). ISSN 1070-9908. https://doi.org/10.1109/LSP.2017.2690358

  10. Bendory, T., Eldar, Y.C., Boumal, N.: Non-convex phase retrieval from STFT measurements. IEEE Trans. Inf. Theory 64(1), 467–484 (2018). ISSN 0018-9448. https://doi.org/10.1109/TIT.2017.2745623

  11. Bodmann, B.G., Hammen, N.: Stable phase retrieval with low-redundancy frames. Adv. Comput. Math. 41(2), 317–331 (2015)

    Article  MathSciNet  Google Scholar 

  12. Bodmann, B.G., Hammen, N.: Algorithms and error bounds for noisy phase retrieval with low-redundancy frames. Appl. Comput. Harmon. Anal. 43(3), 482–503 (2017). ISSN 1063-5203. https://doi.org/10.1016/j.acha.2016.03.005

  13. Bostan, E., Soltanolkotabi, M., Ren, D., Waller, L.: Accelerated wirtinger flow for multiplexed fourier ptychographic microscopy. In 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 3823–3827 (2018). https://doi.org/10.1109/ICIP.2018.8451437

  14. Bragg, W.H., Bragg, L.: X-rays and Crystal Structure. G. Bell and Sons, Ltd, London (1915)

    MATH  Google Scholar 

  15. Candés, E.J., Strohmer, T., Voroninski, V.: Phaselift: exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pure Appl. Math. 66(8), 1241–1274 (2013)

    Article  MathSciNet  Google Scholar 

  16. Candés, E.J., Li, X., Soltanolkotabi, M.: Phase retrieval from coded diffraction patterns. Appl. Comput. Harmon. Anal. 39(2), 277–299 (2015a)

    Article  MathSciNet  Google Scholar 

  17. Candés, E.J., Li, X., Soltanolkotabi, M.: Phase retrieval via wirtinger flow: theory and algorithms. IEEE Trans. Inf. Theory 61(4), 1985–2007 (2015b). ISSN 0018-9448. https://doi.org/10.1109/TIT.2015.2399924

  18. Chang, H., Enfedaque, P., Lou, Y., Marchesini, S.: Partially coherent ptychography by gradient decomposition of the probe. Acta Crystallogr. Sect. A 74(3), 157–169 (2018). https://doi.org/10.1107/S2053273318001924

    Article  MathSciNet  MATH  Google Scholar 

  19. Dainty, J.C., Fienup, J.: Phase retrieval and image reconstruction for astronomy. Image Recovery: Theory Appl. 13, 01 (1987)

    Google Scholar 

  20. Dierolf, M., Bunk, O., Kynde, S., Thibault, P., Johnson, I., Menzel, A., Jefimovs, K., David, C., Marti, O., Pfeiffer, F.: Ptychography & lensless X-ray imaging. Europhys. News 39(1), 22–24 (2008)

    Article  Google Scholar 

  21. Eldar, Y., Sidorenko, P., Mixon, D., Barel, S., Cohen, O.: Sparse phase retrieval from short-time Fourier measurements. IEEE Signal Proc. Lett. 22(5), 638–642 (2015)

    Article  Google Scholar 

  22. Elser, V.: Phase retrieval by iterated projections. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 20(1), 40–55 (2003)

    Article  Google Scholar 

  23. Fienup, J.R.: Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett. 3(1), 27–29 (1978)

    Article  Google Scholar 

  24. Gerchberg, R., Saxton, W.: A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik 35, 237–246 (1972)

    Google Scholar 

  25. Goodman, J.W.: Introduction to Fourier Optics. Roberts and Company Publishers, Englewood (2005)

    Google Scholar 

  26. Gray, R.M.: Toeplitz and circulant matrices: a review. Found. Trends Commun. Inf. Theory 2(3), 155–239 (2006). ISSN 1567-2190. https://doi.org/10.1561/0100000006

  27. Gross, D., Krahmer, F., Kueng, R.: Improved recovery guarantees for phase retrieval from coded diffraction patterns. Appl. Comput. Harmon. Anal. 42, 37–64 (2015)

    Article  MathSciNet  Google Scholar 

  28. Guo, Y., Wang, A., Wang, W.: Multi-source phase retrieval from multi-channel phaseless STFT measurements. Signal Process. 144, 36–40 (2018). ISSN 0165-1684. https://doi.org/10.1016/j.sigpro.2017.09.026

  29. Haham, G.I., Sidorenko, P., Cohen, O.: Reconstruction of an isolated burst of (non-repetitive) pulses from a single frog trace. In Conference on Lasers and Electro-Optics, p. STu3I.3. Optical Society of America, 2017. https://doi.org/10.1364/CLEO_SI.2017.STu3I.3. http://www.osapublishing.org/abstract.cfm?URI=CLEO_SI-2017-STu3I.3

  30. Hauptman, H., Karle, J., Association, A.C.: Solution of the Phase Problem. American Crystallographic Association, New York (1953)

    MATH  Google Scholar 

  31. Iwen, M., Viswanathan, A., Wang, Y.: Fast phase retrieval from local correlation measurements. SIAM J. Imaging Sci. 9(4), 1655–1688 (2016)

    Article  MathSciNet  Google Scholar 

  32. Iwen, M., Viswanathan, A., Wang, Y.: Robust sparse phase retrieval made easy. Appl. Comput. Harmon. Anal. 42(1), 135–142 (2017). ISSN 1063-5203. https://doi.org/10.1016/j.acha.2015.06.007

  33. Iwen, M.A., Preskitt, B., Saab, R., Viswanathan, A.: Phase retrieval from local measurements: improved robustness via eigenvector-based angular synchronization. Appl. Comput. Harmon. Anal. (2018). ISSN 1063-5203. https://doi.org/10.1016/j.acha.2018.06.004. http://www.sciencedirect.com/science/article/pii/S1063520318301210

  34. Jaganathan, K., Eldar, Y.C., Hassibi, B.: STFT phase retrieval: uniqueness guarantees and recovery algorithms. IEEE J. Sel. Top. Signal Process. 10(4), 770–781 (2016)

    Article  Google Scholar 

  35. Jagatap, G., Hegde, C.: Fast, sample-efficient algorithms for structured phase retrieval. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 4917–4927. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/7077-fast-sample-efficient-algorithms-for-structured-phase-retrieval.pdf

  36. Kech, M.: Explicit frames for deterministic phase retrieval via phaselift. Appl. Comput. Harmon. Anal. 45(2), 282–298 (2018). ISSN 1063-5203. https://doi.org/10.1016/j.acha.2016.09.005

  37. Kueng, R., Gross, D., Krahmer, F.: Spherical designs as a tool for derandomization: the case of phaselift. In: 2015 International Conference on Sampling Theory and Applications (SampTA), pp. 192–196 (2015). https://doi.org/10.1109/SAMPTA.2015.7148878

  38. Kueng, R., Zhu, H., Gross, D.: Low rank matrix recovery from Clifford orbits. CoRR. abs/1610.08070 (2016)

  39. Laub, A.J.: Matrix Analysis For Scientists And Engineers, p. 0898715768. Society for Industrial and Applied Mathematics, Philadelphia (2004)

    Google Scholar 

  40. Li, X., Ling, S., Strohmer, T., Wei, K.: Rapid, robust, and reliable blind deconvolution via nonconvex optimization. Appl. Comput. Harmon. Anal. (2018). ISSN 1063-5203. https://doi.org/10.1016/j.acha.2018.01.001

  41. Ling, S., Strohmer, T.: Self-calibration and biconvex compressive sensing. Inverse Probl. 31(11), 115002 (2015)

    Article  MathSciNet  Google Scholar 

  42. Mallat, S., Waldspurger, I.: Phase retrieval for the cauchy wavelet transform. J. Fourier Anal. Appl. 21(6), 1251–1309 (2015). ISSN 1531-5851. https://doi.org/10.1007/s00041-015-9403-4

  43. Marchesini, S., Tu, Y.-C., Wu, H.-T.: Alternating projection, ptychographic imaging and phase synchronization. Appl. Comput. Harmon. Anal. 41(3), 815–851 (2016)

    Article  MathSciNet  Google Scholar 

  44. Melnyk, O., Filbir, F., Krahmer, F.: Phase retrieval from local correlation measurements with fixed shift length. In: Mathematics in Imaging, p. MTu4D–3. Optical Society of America (2019)

  45. Netrapalli, P., Jain, P., Sanghavi, S.: Phase retrieval using alternating minimization. Adv. Neural Inf. Process. Syst., pp. 2796–2804 (2013)

  46. Pauwels, E., Beck, A., Eldar, Y.C., Sabach, S.: On Fienup methods for sparse phase retrieval. IEEE Trans. Signal Process. 1, 12 (2017). https://doi.org/10.1109/TSP.2017.2780044

    Article  MATH  Google Scholar 

  47. Perlmutter, M., Merhi, S., Viswanathan, A., Iwen, M.: Inverting spectrogram measurements via aliased wigner distribution deconvolution and angular synchronization. arXiv preprint arXiv:1907.10773 (2019)

  48. Pfander, G.E., Salanevich, P.: Robust phase retrieval algorithm for time-frequency structured measurements (2016). eprint arXiv:1611.02540

  49. Portnoff, M.: Magnitude-phase relationships for short-time Fourier transforms based on gaussian analysis windows. In: ICASSP ’79. IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. 186–189 (1979). https://doi.org/10.1109/ICASSP.1979.1170695

  50. Preskitt, B.P.: Phase Retrieval from Locally Supported Measurements. PhD thesis, UC San Diego (2018a)

  51. Preskitt, B.P.: Brian preskitt’s dissertation code (2018b). https://github.com/bpreskit/pr_code

  52. Putkunz, C.T., D’Alfonso, A.J., Morgan, A.J., Weyland, M., Dwyer, C., Bourgeois, L., Etheridge, J., Roberts, A., Scholten, R.E., Nugent, K.A., Allen, L.J.: Atom-scale ptychographic electron diffractive imaging of boron nitride cones. Phys. Rev. Lett. 108, 073901 (2012)

    Article  Google Scholar 

  53. Rabiner, L., Juang, B.-H.: Fundamentals of Speech Recognition. Prentice-Hall Inc, Upper Saddle River, NJ, USA (1993) 0-13-015157-2

  54. Rodenburg, J.: Ptychography and related diffractive imaging methods. Adv. Imaging Electron Phys. 150, 87–184 (2008)

    Article  Google Scholar 

  55. Salanevich, P., Pfander, G.E.: Polarization based phase retrieval for time-frequency structured measurements. In: 2015 International Conference on Sampling Theory and Applications (SampTA), pp. 187–191. IEEE (2015)

  56. Salehi, F., Abbasi, E., Hassibi, B.: A precise analysis of phasemax in phase retrieval. In: 2018 IEEE International Symposium on Information Theory (ISIT), pp. 976–980 (2018). https://doi.org/10.1109/ISIT.2018.8437494

  57. Shapiro, D.A., Yu, Y.-S., Tyliszczak, T., Cabana, J., Celestre, R., Chao, W., Kaznatcheev, K., Kilcoyne, A.L.D., Maia, F., Marchesini, S., Meng, Y.S., Warwick, T., Yang, L.L., Padmore, H.A.: Chemical composition mapping with nanometre resolution by soft x-ray microscopy. Nat. Photon. 8, 765–769 (2014)

    Article  Google Scholar 

  58. Shechtman, Y., Eldar, Y.C., Cohen, O., Chapman, H.N., Miao, J., Segev, M.: Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process. Mag. 32(3), 87–109 (2015)

    Article  Google Scholar 

  59. Starodub, D., Rez, P., Hembree, G., Howells, M., Shapiro, D., Chapman, H.N., Fromme, P., Schmidt, K., Weierstall, U., Doak, R.B., Spence, J.C.H.: Dose, exposure time and resolution in serial X-ray crystallography. J. Synchrotron Radiat. 15(1), 62–73 (2008). https://doi.org/10.1107/S0909049507048893

    Article  Google Scholar 

  60. Takajo, H., Takahashi, T., Kawanami, H., Ueda, R.: Numerical investigation of the iterative phase-retrieval stagnation problem: territories of convergence objects and holes in their boundaries. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 14(12), 3175–3187 (1997)

    Article  Google Scholar 

  61. Takajo, H., Takahashi, T., Ueda, R., Taninaka, M.: Study on the convergence property of the hybrid input–output algorithm used for phase retrieval. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 15(11), 2849–2861 (1998)

    Article  MathSciNet  Google Scholar 

  62. Takajo, H., Takahashi, T., Shizuma, T.: Further study on the convergence property of the hybrid input–output algorithm used for phase retrieval. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 16(9), 2163–2168 (1999)

    Article  Google Scholar 

  63. Tu, S., Boczar, R., Simchowitz, M., Soltanolkotabi, M., Recht, B.: Low-rank solutions of linear matrix equations via procrustes flow. In: Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of The 33rd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 48, pp. 964–973, New York, New York, USA, 20–22 June 2016. PMLR. http://proceedings.mlr.press/v48/tu16.html

  64. Waldspurger, I.: Phase retrieval with random gaussian sensing vectors by alternating projections. IEEE Trans. Inf. Theory 64(5), 3301–3312 (2018). ISSN 0018-9448. https://doi.org/10.1109/TIT.2018.2800663

  65. Waldspurger, I., d’Aspremont, A., Mallat, S.: Phase recovery, maxcut and complex semidefinite programming. Math. Programm. 149(1), 47–81 (2015). ISSN 1436-4646. https://doi.org/10.1007/s10107-013-0738-9

  66. Walther, A.: The question of phase retrieval in optics. Opt. Acta 10, 41–49 (1963). https://doi.org/10.1080/713817747

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

RS was supported in part by the NSF via DMS-1517204. The authors would like to thank Mark Iwen for many stimulating conversations on phase retrieval.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rayan Saab.

Additional information

Communicated by Gitta Kutyniok.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Interleaving Operators and Circulant Structure

To set the stage for the proof of Theorem 2, we introduce a certain collection of permutation operators and study their interactions with circulant and block-circulant matrices. The structure we identify here will be of much use to us in unraveling the linear systems we encounter in our model for phase retrieval with local correlation measurements. For \(\ell , N_1, N_2 \in \mathbb {N}, v \in \mathbb {C}^{\ell N_1}, k \in [\ell ],\) and \(H \in \mathbb {C}^{\ell N_1 \times N_2}\), we define the block circulant operator \({{\,\mathrm{circ}\,}}^{N_1}\) by

$$\begin{aligned} {{\,\mathrm{circ}\,}}_k^{N_1}(v)&= \begin{bmatrix} v&S^{N_1} v&\cdots&S^{(k - 1)N_1} v \end{bmatrix} \\ {{\,\mathrm{circ}\,}}_k^{N_1}(H)&= \begin{bmatrix} H&S^{N_1} H&\cdots&S^{(k - 1) N_1}H \end{bmatrix}, \end{aligned}$$

where, as with \({{\,\mathrm{circ}\,}}(\cdot )\), when we omit the subscript we define \({{\,\mathrm{circ}\,}}^{N_1}(H) = {{\,\mathrm{circ}\,}}_\ell ^{N_1}(H)\) and \({{\,\mathrm{circ}\,}}^{N_1}(v) = {{\,\mathrm{circ}\,}}_\ell ^{N_1}(v)\). We now proceed with the following lemmas; the first establishes the inverse of \(P^{(d, N)}\).

Lemma 2

For \(d, N \in \mathbb {N},\) we have

$$\begin{aligned} (P^{(d, N)})^{-1} = P^{(d, N) *} = P^{(N, d)}. \end{aligned}$$

Proof of Lemma 2

Simply take \(v \in \mathbb {C}^{d N}\) and calculate, for \(i \in [d], j \in [N]\),

$$\begin{aligned} (P^{(d, N)} P^{(N, d)} v)_{(i - 1) N + j}&= (P^{(d, N)} (P^{(N, d)} v))_{(i - 1) N + j}\\&= (P^{(N, d)} v)_{(j - 1) d + i} = v_{(i - 1) N + j}, \end{aligned}$$

with these equalities coming from the definition in (16). \(\square \)

We now observe some useful ways in which the interleaving operators commute with the construction of circulant matrices.

Lemma 3

Suppose \(V_i \in \mathbb {C}^{k \times n}, v_{ij} \in \mathbb {C}^k, w_j \in \mathbb {C}^{k N_1}\) for \(i \in [N_1], j \in [N_2]\) and

$$\begin{aligned} M_1= & {} \begin{bmatrix} {{\,\mathrm{circ}\,}}(V_1) \\ \vdots \\ {{\,\mathrm{circ}\,}}(V_{N_1}) \end{bmatrix},\quad M_2 = \begin{bmatrix} {{\,\mathrm{circ}\,}}^{N_1}(w_1)&\cdots&{{\,\mathrm{circ}\,}}^{N_1}(w_{N_2}) \end{bmatrix},\ \text {and} \\ M_3= & {} \begin{bmatrix} {{\,\mathrm{circ}\,}}(v_{11}) &{} \cdots &{} {{\,\mathrm{circ}\,}}(v_{1 N_2}) \\ \vdots &{} \ddots &{} \vdots \\ {{\,\mathrm{circ}\,}}(v_{N_1 1}) &{} \cdots &{} {{\,\mathrm{circ}\,}}(v_{N_1 N_2}) \end{bmatrix}. \end{aligned}$$

Then

$$\begin{aligned} P^{(k, N_1)} M_1&= {{\,\mathrm{circ}\,}}^{N_1}\left( P^{(k, N_1)} \begin{bmatrix} V_1 \\ \vdots \\ V_{N_1} \end{bmatrix}\right) \end{aligned}$$
(50)
$$\begin{aligned} M_2 P^{(k, N_2)*}&= {{\,\mathrm{circ}\,}}^{N_1}\left( \begin{bmatrix} w_1&\cdots&w_{N_2} \end{bmatrix}\right) \end{aligned}$$
(51)
$$\begin{aligned} P^{(k, N_1)}M_3P^{(k, N_2)*}&= {{\,\mathrm{circ}\,}}^{N_1}\left( P^{(k, N_1)} \begin{bmatrix} v_{11} &{} \cdots &{} v_{1 N_2} \\ \vdots &{} \ddots &{} \vdots \\ v_{N_1 1} &{} \cdots &{} v_{N_1 N_2} \end{bmatrix}\right) . \end{aligned}$$
(52)

Proof of Lemma 3

We index the matrices to check the equalities. For (50), we take \((a, b, \ell , j) \in [d] \times [N_1] \times [k] \times [n]\) and have

$$\begin{aligned} (P^{(k, N_1)} M_1)_{(a-1)N_1 + b, (\ell - 1) n + j}= & {} (M_1)_{(b - 1) k + a, (\ell - 1)n + j} = \begin{bmatrix} S^{\ell - 1} V_1 \\ \vdots \\ S^{\ell - 1} V_{N_1} \end{bmatrix}_{(b - 1)k + a, j}\\= & {} (S^{\ell - 1}V_b)_{a, j} = (V_b)_{a + \ell - 1, j} \end{aligned}$$

and

$$\begin{aligned} {{\,\mathrm{circ}\,}}^{N_1}\left( P^{(k, N_1)} \begin{bmatrix} V_1 \\ \vdots \\ V_{N_1} \end{bmatrix}\right) _{(a-1)N_1 + b, (\ell - 1) n + j}&= \left( P^{(k, N_1)} \begin{bmatrix} V_1 \\ \vdots \\ V_{N_1} \end{bmatrix}\right) _{(a - 1)N_1 + b + (\ell -1)N_1, j} \\&= (V_b)_{a + \ell - 1, j} \end{aligned}$$

For (51), we take \((a, b, j) \in [k] \times [N_2] \times [k N_1]\) and have

$$\begin{aligned} (P^{(k, N_2)} M_2^*)_{(a - 1)N_2 + b, j} = (M_2)_{j, (b - 1) k + a} = (w_b)_{j + (a - 1)N_1} \end{aligned}$$

and

$$\begin{aligned} \left( {{\,\mathrm{circ}\,}}^{N_1}\left( \begin{bmatrix} w_1&\cdots&w_{N_2} \end{bmatrix}\right) \right) _{j, (a - 1)N_2 + b} = (S^{N_1(a - 1)} w_b)_j = (w_b)_{j + N_1(a - 1)}, \end{aligned}$$

and (52) follows immediately by combining (50) and (51). \(\square \)

Lemma 4 introduces useful identities relating interleaving operators to kronecker products.

Lemma 4

For , and \(B_i \in \mathbb {C}^{m \times k}, i \in [\ell ]\), we have

(53)
(54)
(55)
(56)

Proof of Lemma 4

For (53), we see that, for \(i, j, k \in [d] \times [N] \times [m]\), we have

$$\begin{aligned} (P^{(d, N)} v \otimes A)_{(i - 1) N + j, k}&= (v \otimes A)_{(j - 1) d + i, k} = v_j A_{i k}, \ \text {while} \\ (A \otimes v)_{(i - 1) N + j, k}&= A_{i k} v_j, \end{aligned}$$

and (54) follows by considering that To get (55), we trace the positions of columns, considering that \((V \otimes A) e_{(i - 1) m + j} = V_j \otimes A_i\). From (54), we observe that \(P^{(d, N)} (V \otimes A) e_{(i - 1) m + j} = A_j \otimes V_i,\) so

$$\begin{aligned} P^{(d, N)} (V \otimes A) P^{(m, \ell )} e_{(j - 1) \ell + i}&= P^{(d, N)} (V \otimes A) e_{(i - 1) m + j}\\&= A_j \otimes V_i = (A \otimes V) e_{(j - 1) \ell + i}. \end{aligned}$$

As for (56), we remark that

\(\square \)

The following lemma on the Kronecker product is standard (e.g., Theorem 13.26 in [39]).

Lemma 5

We have \(\mathrm{vec}(A B C) = (C^T \otimes A) \mathrm{vec}(B)\) for any \(A \in \mathbb {C}^{m \times n}, B \in \mathbb {C}^{n \times p}, C \in \mathbb {C}^{p \times k}.\) In particular, for \(a, b \in \mathbb {C}^{d}, \mathrm{vec}(a b^*) = \overline{b} \otimes a\), and

$$\begin{aligned} \mathrm{vec}E_{jk} (\mathrm{vec}E_{j' k'})^* = E_{k k'} \otimes E_{j j'}. \end{aligned}$$
(57)

The next lemma covers the standard result concerning the diagonalization of circulant matrices, as well as a generalization to block-circulant matrices.

Lemma 6

For any \(v \in \mathbb {C}^{d}\), we have

$$\begin{aligned} {{\,\mathrm{circ}\,}}(v) = F_d {{\,\mathrm{diag}\,}}(\sqrt{d} F_d^* v) F_d^* = \sqrt{d} \sum _{j = 1}^d (f_j^{d *} v) f_j^d f_j^{d *} \end{aligned}$$
(58)

Suppose \(V \in C^{k N \times m}\), then \({{\,\mathrm{circ}\,}}^N(V)\) is block diagonalizable by

$$\begin{aligned} {{\,\mathrm{circ}\,}}^N(V) = \left( F_k \otimes I_N\right) \left( {{\,\mathrm{diag}\,}}(M_1, \ldots , M_k)\right) \left( F_k \otimes I_m\right) ^*, \end{aligned}$$
(59)

where

$$\begin{aligned} \sqrt{k}\left( F_k \otimes I_N\right) ^* V = \begin{bmatrix} M_1 \\ \vdots \\ M_k \end{bmatrix}, \quad \text {or} \quad M_j = \sqrt{k} (f_j^k \otimes I_N)^* V \end{aligned}$$
(60)

Proof of Lemma 6

The diagonalization in (58) is a standard result: see, e.g., Theorem 7 of [26].

To prove (59), we set \(V_i\) to be the \(k \times m\) blocks of V such that and begin by observing that, for \(u \in \mathbb {C}^k\) and \(W \in \mathbb {C}^{m \times p}\), the \(\ell ^{\mathrm{th}}\) \(k \times p\) block of \({{\,\mathrm{circ}\,}}^N(V)(u \otimes W)\) is

$$\begin{aligned} \left( {{\,\mathrm{circ}\,}}^N(V)(u \otimes W)\right) _{[\ell ]} = \sum _{i = 1}^k u_i (S^{N (i - 1)}V)_\ell W = \sum _{i = 1}^k u_i V_{\ell - i + 1} W. \end{aligned}$$

Taking \(u = f_j^k\) and \(W = I_m\), this gives

$$\begin{aligned} \left( {{\,\mathrm{circ}\,}}^N(V)(f_j^k \otimes I_m)\right) _{[\ell ]}&= \frac{1}{\sqrt{k}}\sum _{i = 1}^k \omega _k^{(j - 1) (i - 1)} V_{\ell - i + 1} I_m = \frac{1}{\sqrt{k}} \omega _k^{(j - 1) (\ell - 1)} \sum _{i = 1}^k \omega _k^{-(j - 1)(i - 1)} V_i \\&= (f_j^k)_\ell \left( \sqrt{k} (f_j^k \otimes I_N)^* V \right) = (f_j^k)_\ell M_j. \end{aligned}$$

This relation is equivalent to the statement of the lemma, i.e., having

$$\begin{aligned} {{\,\mathrm{circ}\,}}^N(V) (f_j^k \otimes I_m) = (f_j^k \otimes M_j) = (f_j^k \otimes I_N) M_j. \end{aligned}$$

\(\square \)

Lemma 6 immediately gives the following corollary regarding the conditioning of \({{\,\mathrm{circ}\,}}^N(V)\), with which we return to considering spanning families of masks.

Corollary 3

With notation as in Lemma 6, the condition number of \({{\,\mathrm{circ}\,}}^N(V)\) is

$$\begin{aligned} \dfrac{\max \limits _{i \in [k]} \sigma _{\max } (M_i)}{\min \limits _{i \in [k]} \sigma _{\min } (M_i)}. \end{aligned}$$

1.2 Lemmas on Block Circulant Structure

We begin with Lemma 7, which describes the transposes of block circulant matrices. For this lemma and the remainder of this section, the reader is advised to recall the definitions of \(R_k\) and \(P^{(d, N)}\) from Sect. 1.5 and (16), as well as \(\mathcal {P}(P, \{k_i\})\) and \(\mathcal {T}_N\) from Sect. 3.2.

Lemma 7

Given \(k, N, m \in \mathbb {N}\) and \(V \in \mathbb {C}^{kN \times m}\), we have

$$\begin{aligned} {{\,\mathrm{circ}\,}}^N(V)^* = {{\,\mathrm{circ}\,}}^m\left( (R_k \otimes I_m) \mathcal {T}_N(V) \right) . \end{aligned}$$

Proof of Lemma 7

Suppose \(V_i\) are the \(N \times m\) blocks of V, such that \(V = \left[ V_1^T \cdots V_k^T\right] ^T\). Indexing blockwise, we have \({{\,\mathrm{circ}\,}}^N(V)_{[ij]} = V_{i - j + 1}\), so that \({{\,\mathrm{circ}\,}}^N(V)^*_{[ij]} = V_{j - i + 1}^*\). In other words,

$$\begin{aligned} {{\,\mathrm{circ}\,}}^N(V)^* = \begin{bmatrix} V_1^* &{} V_2^* &{} \cdots &{} V_N^* \\ V_N^* &{} V_1^* &{} \cdots &{} V_{N - 1}^* \\ \vdots &{} &{} \ddots &{} \vdots \\ V_2^* &{} V_3^* &{} \cdots &{} V_1^* \end{bmatrix} = {{\,\mathrm{circ}\,}}^m((R_k \otimes I_m) \mathcal {T}_N(V) ) . \end{aligned}$$

\(\square \)

Lemmas 8 and 9 provide identities for a few block matrix structures that will be of interest.

Lemma 8

Given \(N_1, N_2, k, m \in \mathbb {N}\) and \(V_i \in \mathbb {C}^{k N_1 \times m}\) for \(i \in [N_2]\), we have

$$\begin{aligned} \begin{bmatrix} {{\,\mathrm{circ}\,}}^{N_1}(V_1)&\cdots&{{\,\mathrm{circ}\,}}^{N_1}(V_{N_2}) \end{bmatrix} (P^{(k, N_2)} \otimes I_m)^* = {{\,\mathrm{circ}\,}}^{N_1}\left( \begin{bmatrix} V_1&\cdots&V_{N_2}\end{bmatrix}\right) . \end{aligned}$$

Proof of Lemma 8

We quote (51) from Lemma 3 and consider that \(P^{(k, N_2)} \otimes I_m\) is a permutation that changes the blockwise indices of \(m \times p\) blocks (or, acting from the right, \(p \times m\) blocks) exactly the way that \(P^{(k, N_2)}\) changes the indices of a vector. \(\square \)

Lemma 9

Given \(k, n \in \mathbb {N}\) and \(V_j \in \mathbb {C}^{m_j \times n_j}\) for \(j \in [n]\) and setting \(M = \sum _{j = 1}^n m_j, N = \sum _{j = 1}^N n_j,\) and \(D = {{\,\mathrm{diag}\,}}(I_k \otimes V_j)_{j = 1}^n \in \mathbb {C}^{k M \times k N}\), we have

where \(P_1 = \mathcal {P}(P^{(n, k)}, (m_{j \mathrm{mod}_1 n})_{j = 1}^{kn})\) and \(P_2 = \mathcal {P}(P^{(n, k)}, (n_{j \mathrm{mod}_1 n})_{j = 1}^{kn})\).

Proof of Lemma 9

We immediately reduce to the case \(m_j = n_j = 1\) for all j by observing that \(P_1\) and \(P_2\) will act on blockwise indices precisely as \(P^{(n, k)}\) acts on individual indices. Here, we replace \(V_j\) with \(v_j \in \mathbb {C}\), and note that \({{\,\mathrm{diag}\,}}(V_j)_{j = 1}^n = {{\,\mathrm{diag}\,}}(v)\). Hence, we need only remark that

while

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preskitt, B., Saab, R. Admissible Measurements and Robust Algorithms for Ptychography. J Fourier Anal Appl 27, 8 (2021). https://doi.org/10.1007/s00041-021-09811-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-021-09811-8

Keywords

Navigation