Skip to main content
Log in

The role of extracellular vesicles in podocyte autophagy in kidney disease

  • Review
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Podocytes are the key cells involved in protein filtration in the glomerulus. Once proteins appear in the urine when podocytes fail, patients will end with renal failure due to the progression of glomerular damage if no proper treatment is applied. The injury and loss of podocytes can be attributed to diverse factors, such as genetic, immunologic, toxic, or metabolic disorders. Recently, autophagy has emerged as a key mechanism to eliminate the unwanted cytoplasmic materials and to prolong the lifespan of podocytes by alleviating cell damage and stress. Typically, the fundamental function of extracellular vesicles (EVs) is to mediate the intercellular communication. Recent studies have suggested that, EVs, especially exosomes, play a certain role in information transfer by communicating proteins, mRNAs, and microRNAs with recipient cells. Under physiological and pathological conditions, EVs assist in the bioinformation interchange between kidneys and other organs. It is suggested that EVs are related to the pathogenesis of acute kidney injury and chronic kidney disease, including glomerular disease, diabetic nephropathy, renal fibrosis and end-stage renal disease. However, the role of EVs in podocyte autophagy remains unclear so far. Here, this study integrated the existing information about the relevancy, diagnostic value and therapeutic potential of EVs in a variety of podocytes-related diseases. The accumulating evidence highlighted that autophagy played a critical role in the homeostasis of podocytes in glomerular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADSCs:

Adipose-derived stem cells.

AKI:

Acute kidney injury

AMPK:

AMP-activated protein kinase

ATF:

Activating transcription factor

ATG:

Autophagy-related gene

BMP:

Bone morphogenetic protein

BMSCs:

Bone marrow-derived mesenchymal stem cells

CHOP:

C/EBP homologous protein

CKD:

Chronic kidney disease

DN:

Diabetic nephropathy

EMT:

Epithelial–mesenchymal transition

ERS:

Endoplasmic reticulum stress

EVs:

Extracellular vesicles

ESRD:

End-stage renal disease

FSGS:

Focal segmental glomerulosclerosis

GBM:

Glomerular basement membrane

HG:

High glucose

HIF1:

Hypoxia-inducible factor 1

IRE1:

Inositol requiring enzyme 1

I/R:

Ischemia-reperfusion

JNK1:

c-junk N-terminal kinase 1

LC3:

Microtubule-associated protein light chain 3

LKB1:

Liver kinase B1

MCD:

Minimal change disease

MN:

Membranous nephropathy

mTORC:

Mammalian target of rapamycin complex

MVBs:

Multivesicular bodies

MPs:

Microparticles

NAFLD:

Non-alcoholic fatty liver disease

NLRP3:

Nucleotide-oligomerization domain-like receptor 3

NS:

Nephrotic syndrome

PERK:

Protein kinase RNA-like ER kinase

RAPTOR:

Regulatory associated protein of mTOR

Rheb:

Ras homolog enriched in brain

ROS:

Reactive oxygen species

SIRT1:

Sirtuin 1

SSNS:

Steroid-sensitive nephrotic syndrome

TSC1/2:

Tuberous sclerosis complex 1/2

ULK1:

Unc-51-like1

UPR:

Unfolded protein response

USCs:

Urine-derived stem cells

References

  • Al-Rasheed NM, Al-Rasheed NM, Attia HA, Al-Amin MA, Al-Ajmi HN, Hasan IH, Mohamad RA, Sinjilawi NA (2015) Renoprotective effects of fenofibrate via modulation of LKB1/AMPK mRNA expression and endothelial dysfunction in a rat model of diabetic nephropathy. Pharmacology 95(5–6):229–239

    Article  CAS  PubMed  Google Scholar 

  • Asanuma K, Tanida I, Shirato I, Ueno T, Takahara H, Nishitani T, Kominami E, Tomino Y (2003) MAP-LC3, a promising autophagosomal marker, is processed during the differentiation and recovery of podocytes from PAN nephrosis. Faseb J 17(9):1165–1167

    Article  CAS  PubMed  Google Scholar 

  • Bader CA, Shandala T, Ng YS, Johnson IR, Brooks DA (2015) Atg9 is required for intraluminal vesicles in amphisomes and autolysosomes. Biol Open 4(11):1345–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baixauli F, López-Otín C, Mittelbrunn M (2014) Exosomes and autophagy: coordinated mechanisms for the maintenance of cellular fitness. Front Immunol 5:403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borges FT, Melo SA, Özdemir BC, Kato N, Revuelta I, Miller CA, Gattone VH 2nd, LeBleu VS, Kalluri R (2013) TGF-β1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis. J Am Soc Nephrol 24(3):385–392

  • Bruno S, Camussi G (2013) Role of mesenchymal stem cell-derived microvesicles in tissue repair. Pediatr Nephrol 28(12):2249–2254

    Article  PubMed  Google Scholar 

  • Bruno S, Porta S, Bussolati B (2016) Extracellular vesicles in renal tissue damage and regeneration. Eur J Pharmacol 790:83–91

    Article  CAS  PubMed  Google Scholar 

  • Burger D, Schock S, Thompson CS, Montezano AC, Hakim AM, Touyz RM (2013) Microparticles: biomarkers and beyond. Clin Sci (Lond) 124(7):423–441

    Article  CAS  Google Scholar 

  • Burger D, Thibodeau JF, Holterman CE, Burns KD, Touyz RM, Kennedy CR (2014) Urinary podocyte microparticles identify prealbuminuric diabetic glomerular injury. J Am Soc Nephrol 25(7):1401–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cammisotto PG, Londono I, Gingras D, Bendayan M (2008) Control of glycogen synthase through ADIPOR1-AMPK pathway in renal distal tubules of normal and diabetic rats. Am J Physiol Renal Physiol 294(4):F881–F889

    Article  CAS  PubMed  Google Scholar 

  • Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78(9):838–848

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Hao Y, Li H, Liu Q, Gao F, Liu W, Duan H (2014) Role of endoplasmic reticulum stress in apoptosis of differentiated mouse podocytes induced by high glucose. Int J Mol Med 33(4):809–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi HY, Lee HG, Kim BS, Ahn SH, Jung A, Lee M, Lee JE, Kim HJ, Ha SK, Park HC (2015) Mesenchymal stem cell-derived microparticles ameliorate peritubular capillary rarefaction via inhibition of endothelial–mesenchymal transition and decrease tubulointerstitial fibrosis in unilateral ureteral obstruction. Stem Cell Res Ther 6(1):18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collino F, Bruno S, Incarnato D, Dettori D, Neri F, Provero P, Pomatto M, Oliviero S, Tetta C, Quesenberry PJ, Camussi G (2015) AKI recovery induced by mesenchymal stromal cell-derived extracellular vesicles carrying microRNAs. J Am Soc Nephrol 26(10):2349–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    Article  CAS  PubMed  Google Scholar 

  • Daenen K, Andries A, Mekahli D, Van Schepdael A, Jouret F, Bammens B (2018) Oxidative stress in chronic kidney disease. Pediatric Nephrol 34(6):975–991

    Article  Google Scholar 

  • Dai G, Yao X, Zhang Y, Gu J, Geng Y, Xue F, Zhang J (2018) Colorectal cancer cell-derived exosomes containing miR-10b regulate fibroblast cells via the PI3K/Akt pathway. Bull Cancer 105(4):336–349

    Article  PubMed  Google Scholar 

  • Davis BK, Wen H, Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29:707–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Agati VD (2012) Pathobiology of focal segmental glomerulosclerosis: new developments. Curr Opin Nephrol Hypertens 21(3):243–250

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Choi ME (2015) Autophagy in diabetic nephropathy. J Endocrinol 224(1):R15–R30

    Article  CAS  PubMed  Google Scholar 

  • Dorayappan KDP, Wanner R, Wallbillich JJ, Saini U, Zingarelli R, Suarez AA, Cohn DE, Selvendiran K (2018) Hypoxia-induced exosomes contribute to a more aggressive and chemoresistant ovarian cancer phenotype: a novel mechanism linking STAT3/Rab proteins. Oncogene 37(28):3806–3821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebrahim N, Ahmed IA, Hussien NI, Dessouky AA, Farid AS, Elshazly AM, Mostafa O, Gazzar WBE, Sorour SM, Seleem Y, Hussein AM, Sabry D (2018) Mesenchymal stem cell-derived exosomes ameliorated diabetic nephropathy by autophagy induction through the mTOR signaling pathway. Cells 7(12):226

    Article  CAS  PubMed Central  Google Scholar 

  • Eirin A, Zhu XY, Puranik AS, Tang H, McGurren KA, van Wijnen AJ, Lerman A, Lerman LO (2017) Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation. Kidney Int 92(1):114–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan G-C, Shi B, Wang Y, Zhao R, Long X, Deng W, Wang Z (2018) Bone marrow mesenchymal stem cell-derived exosomal miR-21 protects C-kit + cardiac stem cells from oxidative injury through the PTEN/PI3K/Akt axis. PLoS ONE 13(2):e0191616

    Article  CAS  Google Scholar 

  • Fang L, Zhou Y, Cao H, Wen P, Jiang L, He W, Dai C, Yang J (2013) Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury. PLoS ONE 8(4):e60546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Y, Lv LL, Wu WJ, Li ZL, Chen J, Ni HF, Zhou LT, Tang TT, Wang FM, Wang B, Chen PS, Crowley SD, Liu BC (2018) Urinary exosomes and exosomal CCL2 mRNA as biomarkers of active histologic injury in IgA nephropathy. Am J Pathol 188(11):2542–2552

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Zuo B, Wang Y, Li S, Yang J, Sun D (2020) Protective function of exosomes from adipose tissue-derived mesenchymal stem cells in acute kidney injury through SIRT1 pathway. Life Sci 255:117719

    Article  CAS  PubMed  Google Scholar 

  • Germain M, Slack RS (2011) MCL-1 regulates the balance between autophagy and apoptosis. Autophagy 7(5):549–551

    Article  CAS  PubMed  Google Scholar 

  • Giovinazzo JA, Thomson RP, Khalizova N, Zager PJ, Malani N, Rodriguez-Boulan E, Raper J, Schreiner R (2020) Apolipoprotein L-1 renal risk variants form active channels at the plasma membrane driving cytotoxicity. Elife 9:e51185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo H, Chitiprolu M, Roncevic L, Javalet C, Hemming FJ, Trung MT, Meng L, Latreille E, Tanese de Souza C, McCulloch D, Baldwin RM, Auer R, Côté J, Russell RC, Sadoul R, Gibbings D (2017) Atg5 disassociates the V(1)V(0)-ATPase to promote exosome production and tumor metastasis independent of canonical macroautophagy. Dev Cell 43(6):716–730.e717

    Article  CAS  PubMed  Google Scholar 

  • Gödel M, Hartleben B, Herbach N, Liu S, Zschiedrich S, Lu S, Debreczeni-Mór A, Lindenmeyer MT, Rastaldi MP, Hartleben G, Wiech T, Fornoni A, Nelson RG, Kretzler M, Wanke R, Pavenstädt H, Kerjaschki D, Cohen CD, Hall MN, Rüegg MA, Inoki K, Walz G, Huber TB (2011) Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Investig 121(6):2197–2209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haase VH (2006) Hypoxia-inducible factors in the kidney. Am J Physiol Renal Physiol 291(2):F271–F281

    Article  CAS  PubMed  Google Scholar 

  • Han D, Huang W, Li X, Gao L, Su T, Li X, Ma S, Liu T, Li C, Chen J, Gao E, Cao F (2016) Melatonin facilitates adipose-derived mesenchymal stem cells to repair the murine infarcted heart via the SIRT1 signaling pathway. J Pineal Res 60(2):178–192

    Article  CAS  PubMed  Google Scholar 

  • Hanson PI, Cashikar A (2012) Multivesicular body morphogenesis. Annu Rev Cell Dev Biol 28:337–362

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13(4):251–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartleben B, Gödel M, Meyer-Schwesinger C, Liu S, Ulrich T, Köbler S, Wiech T, Grahammer F, Arnold SJ, Lindenmeyer MT, Cohen CD, Pavenstädt H, Kerjaschki D, Mizushima N, Shaw AS, Walz G, Huber TB (2010) Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest 120(4):1084–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa K, Wakino S, Simic P, Sakamaki Y, Minakuchi H, Fujimura K, Hosoya K, Komatsu M, Kaneko Y, Kanda T, Kubota E, Tokuyama H, Hayashi K, Guarente L, Itoh H (2013) Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat Med 19(11):1496–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He W, Wang Y, Zhang MZ, You L, Davis LS, Fan H, Yang HC, Fogo AB, Zent R, Harris RC, Breyer MD, Hao CM (2010) Sirt1 activation protects the mouse renal medulla from oxidative injury. J Clin Invest 120(4):1056–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Wang Y, Lu X, Zhu B, Pei X, Wu J, Zhao W (2015) Micro-vesicles derived from bone marrow stem cells protect the kidney both in vivo and in vitro by microRNA-dependent repairing. Nephrology (Carlton) 20(9):591–600

    Article  CAS  Google Scholar 

  • Heras-Sandoval D, Pérez-Rojas JM, Hernández-Damián J, Pedraza-Chaverri J (2014) The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 26(12):2694–2701

    Article  CAS  PubMed  Google Scholar 

  • Herbach N, Schairer I, Blutke A, Kautz S, Siebert A, Göke B, Wolf E, Wanke R (2009) Diabetic kidney lesions of GIPRdn transgenic mice: podocyte hypertrophy and thickening of the GBM precede glomerular hypertrophy and glomerulosclerosis. Am J Physiol Renal Physiol 296(4):F819–F829

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Lv J, Li T, Huai G, Li X, Xiang S, Wang L, Qin Z, Pang J, Zou B, Wang Y (2016) Notoginsenoside R1 ameliorates podocyte injury in rats with diabetic nephropathy by activating the PI3K/Akt signaling pathway. Int J Mol Med 38(4):1179–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Z, Zhang Y, Zhou J, Zhang Y (2017) Urinary exosomal miR-193a can be a potential biomarker for the diagnosis of primary focal segmental glomerulosclerosis in children. Biomed Res Int 2017: 7298160

    PubMed  PubMed Central  Google Scholar 

  • Huber TB, Walz G, Kuehn EW (2011) mTOR and rapamycin in the kidney: signaling and therapeutic implications beyond immunosuppression. Kidney Int 79(5):502–511

    Article  CAS  PubMed  Google Scholar 

  • Inoki K (2014) mTOR signaling in autophagy regulation in the kidney. Semin Nephrol 34(1):2–8

    Article  CAS  PubMed  Google Scholar 

  • Inoki K, Mori H, Wang J, Suzuki T, Hong S, Yoshida S, Blattner SM, Ikenoue T, Rüegg MA, Hall MN, Kwiatkowski DJ, Rastaldi MP, Huber TB, Kretzler M, Holzman LB, Wiggins RC, Guan KL (2011) mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest 121(6):2181–2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iraci N, Leonardi T, Gessler F, Vega B, Pluchino S (2016) Focus on extracellular vesicles: physiological role and signalling properties of extracellular membrane vesicles. Int J Mol Sci 17(2):171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang ZZ, Liu YM, Niu X, Yin JY, Hu B, Guo SC, Fan Y, Wang Y, Wang NS (2016) Exosomes secreted by human urine-derived stem cells could prevent kidney complications from type I diabetes in rats. Stem Cell Res Ther 7:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang XS, Chen XM, Wan JM, Gui HB, Ruan XZ, Du XG (2017) Autophagy protects against palmitic acid-induced apoptosis in podocytes in vitro. Sci Rep 7:42764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Liu J, Chen L, Jin Y, Zhang G, Lin Z, Du S, Fu Z, Chen T, Qin Y, Sun X (2019) Serum secreted miR-137-containing exosomes affects oxidative stress of neurons by regulating OXR1 in Parkinson’s disease. Brain Res 1722:146331

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Liu S, Ma Q, Xiao D, Chen L (2017) Berberine enhances the AMPK activation and autophagy and mitigates high glucose-induced apoptosis of mouse podocytes. Eur J Pharmacol 794:106–114

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Shi Y, Gong J, Zhao L, Li Y, He Q, Huang H (2019) Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte. Stem Cell Res Ther 10(1):95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalani A, Mohan A, Godbole MM, Bhatia E, Gupta A, Sharma RK, Tiwari S (2013) Wilm’s tumor-1 protein levels in urinary exosomes from diabetic patients with or without proteinuria. PLoS ONE 8(3):e60177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann A, Beier V, Franquelim HG, Wollert T (2014) Molecular mechanism of autophagic membrane-scaffold assembly and disassembly. Cell 156(3):469–481

    Article  CAS  PubMed  Google Scholar 

  • Kaushik S, Cuervo AM (2012) Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol 22(8):407–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakami T, Gomez IG, Ren S, Hudkins K, Roach A, Alpers CE, Shankland SJ, D’Agati VD, Duffield JS (2015) Deficient autophagy results in mitochondrial dysfunction and FSGS. J Am Soc Nephrol 26(5):1040–1052

    Article  CAS  PubMed  Google Scholar 

  • Kelekar A (2005) Autophagy. Ann N Y Acad Sci 1066:259–271

    Article  CAS  PubMed  Google Scholar 

  • Kim NH, Rincon-Choles H, Bhandari B, Choudhury GG, Abboud HE, Gorin Y (2006) Redox dependence of glomerular epithelial cell hypertrophy in response to glucose. Am J Physiol Renal Physiol 290(3):F741–F751

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DK, Nam BY, Li JJ, Park JT, Lee SH, Kim DH, Kim JY, Kang HY, Han SH, Yoo TH, Han DS, Kang SW (2012a) Translationally controlled tumour protein is associated with podocyte hypertrophy in a mouse model of type 1 diabetes. Diabetologia 55(4):1205–1217

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Shon E, Kim CS, Kim JS (2012b) Renal podocyte injury in a rat model of type 2 diabetes is prevented by metformin. Exp Diabetes Res 2012: 210821

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim MY, Lim JH, Youn HH, Hong YA, Yang KS, Park HS, Chung S, Ko SH, Shin SJ, Choi BS, Kim HW, Kim YS, Lee JH, Chang YS, Park CW (2013) Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT1-PGC1α axis in db/db mice. Diabetologia 56(1):204–217

    Article  CAS  PubMed  Google Scholar 

  • Kourembanas S (2015) Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu Rev Physiol 77:13–27

    Article  CAS  PubMed  Google Scholar 

  • Kraft C, Reggiori F, Peter M (2009) Selective types of autophagy in yeast. Biochim Biophys Acta 1793(9):1404–1412

    Article  CAS  PubMed  Google Scholar 

  • Krause M, Samoylenko A, Vainio SJ (2015) Exosomes as renal inductive signals in health and disease, and their application as diagnostic markers and therapeutic agents. Front Cell Dev Biol 3:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Kroemer G, Mariño G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40(2):280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kume S, Uzu T, Horiike K, Chin-Kanasaki M, Isshiki K, Araki S, Sugimoto T, Haneda M, Kashiwagi A, Koya D (2010) Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest 120(4):1043–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan X, Lederman R, Eng JM, Shoshtari SS, Saleem MA, Malhotra A, Singhal PC (2016) Nicotine induces podocyte apoptosis through increasing oxidative stress. PLoS ONE 11(12):e0167071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Latifkar A, Ling L, Hingorani A, Johansen E, Clement A, Zhang X, Hartman J, Fischbach C, Lin H, Cerione RA, Antonyak MA (2019) Loss of sirtuin 1 alters the secretome of breast cancer cells by impairing lysosomal integrity. Dev Cell 49(3):393–408.e397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MJ, Feliers D, Mariappan MM, Sataranatarajan K, Mahimainathan L, Musi N, Foretz M, Viollet B, Weinberg JM, Choudhury GG, Kasinath BS (2007) A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy. Am J Physiol Renal Physiol 292(2):F617–F627

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Park S, Takahashi Y, Wang HG (2010) The association of AMPK with ULK1 regulates autophagy. PLoS ONE 5(11):e15394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee H, Han KH, Lee SE, Kim SH, Kang HG, Cheong HI (2012) Urinary exosomal WT1 in childhood nephrotic syndrome. Pediatr Nephrol 27(2):317–320

    Article  CAS  PubMed  Google Scholar 

  • Liu Y (2004) Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Hitomi H, Diah S, Deguchi K, Mori H, Masaki T, Nakano D, Kobori H, Nishiyama A (2013) Roles of Na+/H+ exchanger type 1 and intracellular pH in angiotensin II-induced reactive oxygen species generation and podocyte apoptosis. J Pharmacol Sci 122(3):176–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Zhang Y, Liu A, Wang J, Li L, Chen X, Gao X, Xue Y, Zhang X, Liu Y (2016) Distinct dasatinib-induced mechanisms of apoptotic response and exosome release in imatinib-resistant human chronic myeloid leukemia cells. Int J Mol Sci 17(4):531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu L, Jin X, Hu CF, Li R, Zhou Z, Shen CX (2017) Exosomes Derived from Mesenchymal Stem Cells Rescue Myocardial Ischaemia/Reperfusion Injury by Inducing Cardiomyocyte Autophagy Via AMPK and Akt Pathways. Cell Physiol Biochem 43(1):52–68

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhang R, Huang L, Zheng Z, Vlassara H, Striker G, Zhang X, Guan Y, Zheng F (2019) Excessive oxidative stress contributes to increased acute ER stress kidney injury in aged mice. Oxid Med Cell Longev 2019: 1–15

    Google Scholar 

  • Lu MK, Gong XG, Guan KL (2011) mTOR in podocyte function: is rapamycin good for diabetic nephropathy? Cell Cycle 10(20):3415–3416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma T, Zhu J, Chen X, Zha D, Singhal PC, Ding G (2013) High glucose induces autophagy in podocytes. Exp Cell Res 319(6):779–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Fu R, Duan Z, Lu J, Gao J, Tian L, Lv Z, Chen Z, Han J, Jia L, Wang L (2016) Sirt1 is essential for resveratrol enhancement of hypoxia-induced autophagy in the type 2 diabetic nephropathy rat. Pathol Res Pract 212(4):310–318

    Article  CAS  PubMed  Google Scholar 

  • Maezawa Y, Takemoto M, Yokote K (2015) Cell biology of diabetic nephropathy: Roles of endothelial cells, tubulointerstitial cells and podocytes. J Diabetes Investig 6(1):3–15

    Article  PubMed  Google Scholar 

  • Mizushima N (2010) The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22(2):132–139

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140(3):313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon PG, Lee JE, You S, Kim TK, Cho JH, Kim IS, Kwon TH, Kim CD, Park SH, Hwang D, Kim YL, Baek MC (2011) Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy. Proteomics 11(12):2459–2475

    Article  CAS  PubMed  Google Scholar 

  • Morel O, Jesel L, Freyssinet JM, Toti F (2011) Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler Thromb Vasc Biol 31(1):15–26

    Article  CAS  PubMed  Google Scholar 

  • Murrow L, Malhotra R, Debnath J (2015) ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat Cell Biol 17(3):300–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagase M, Fujita T (2013) Role of Rac1-mineralocorticoid-receptor signalling in renal and cardiac disease. Nat Rev Nephrol 9(2):86–98

    Article  CAS  PubMed  Google Scholar 

  • Nassar W, El-Ansary M, Sabry D, Mostafa MA, Fayad T, Kotb E, Temraz M, Saad AN, Essa W, Adel H (2016) Umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases. Biomater Res 20:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nawaz M, Fatima F, Vallabhaneni KC, Penfornis P, Valadi H, Ekström K, Kholia S, Whitt JD, Fernandes JD, Pochampally R, Squire JA, Camussi G (2016) Extracellular vesicles: evolving factors in stem cell biology. Stem Cells Int 2016: 1073140

    Article  PubMed  CAS  Google Scholar 

  • Ng F, Tang BL (2013) Sirtuins’ modulation of autophagy. J Cell Physiol 228(12):2262–2270

    Article  CAS  PubMed  Google Scholar 

  • Oakes SA, Papa FR (2015) The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol 10:173–194

    Article  CAS  PubMed  Google Scholar 

  • Pisitkun T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 101(36):13368–13373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro JS, Hubbard BP, Varela AT, Davis JG, Varamini B, Hafner A, Moaddel R, Rolo AP, Coppari R, Palmeira CM, de Cabo R, Baur JA, Sinclair DA (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15(5):675–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DC, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90(4):1383–1435

    Article  CAS  PubMed  Google Scholar 

  • Record M, Carayon K, Poirot M, Silvente-Poirot S (2014) Exosomes as new vesicular lipid transporters involved in cell–cell communication and various pathophysiologies. Biochim Biophys Acta 1841(1):108–120

    Article  CAS  PubMed  Google Scholar 

  • Reidy K, Kang HM, Hostetter T, Susztak K (2014) Molecular mechanisms of diabetic kidney disease. J Clin Investig 124(6):2333–2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rong G, Tang X, Guo T, Duan N, Wang Y, Yang L, Zhang J, Liang X (2015) Advanced oxidation protein products induce apoptosis in podocytes through induction of endoplasmic reticulum stress. J Physiol Biochem 71(3):455–470

    Article  CAS  PubMed  Google Scholar 

  • Rouschop KM, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K, Keulers T, Mujcic H, Landuyt W, Voncken JW, Lambin P, van der Kogel AJ, Koritzinsky M, Wouters BG (2010) The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest 120(1):127–141

    Article  CAS  PubMed  Google Scholar 

  • Salem MA, Adly AA, Ismail EA, Darwish YW, Kamel HA (2015) Platelets microparticles as a link between micro- and macro-angiopathy in young patients with type 1 diabetes. Platelets 26(7):682–688

    Article  PubMed  CAS  Google Scholar 

  • Sanders MJ, Grondin PO, Hegarty BD, Snowden MA, Carling D (2007) Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem J 403(1):139–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarbassov DD, Ali SM, Sabatini DM (2005) Growing roles for the mTOR pathway. Curr Opin Cell Biol 17(6):596–603

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Yanagihara T, Ghazizadeh M, Ishizaki M, Adachi A, Sasaki Y, Igarashi T, Fukunaga Y (2009) Correlation of autophagy type in podocytes with histopathological diagnosis of IgA nephropathy. Pathobiology 76(5):221–226

    Article  CAS  PubMed  Google Scholar 

  • Sokolovska J, Isajevs S, Sugoka O, Sharipova J, Lauberte L, Svirina D, Rostoka E, Sjakste T, Kalvinsh I, Sjakste N (2010) Influence of metformin on GLUT1 gene and protein expression in rat streptozotocin diabetes mellitus model. Arch Physiol Biochem 116(3):137–145

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Shi H, Yin S, Ji C, Zhang X, Zhang B, Wu P, Shi Y, Mao F, Yan Y, Xu W, Qian H (2018) Human mesenchymal stem cell derived exosomes alleviate type 2 diabetes mellitus by reversing peripheral insulin resistance and relieving β-cell destruction. ACS Nano 12(8):7613–7628

    Article  CAS  PubMed  Google Scholar 

  • Susztak K, Raff AC, Schiffer M, Böttinger EP (2006) Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 55(1):225–233

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K (2013) Selective autophagy in budding yeast. Cell Death Differ 20(1):43–48

    Article  CAS  PubMed  Google Scholar 

  • Tagawa A, Yasuda M, Kume S, Yamahara K, Nakazawa J, Chin-Kanasaki M, Araki H, Araki S, Koya D, Asanuma K, Kim EH, Haneda M, Kajiwara N, Hayashi K, Ohashi H, Ugi S, Maegawa H, Uzu T (2016) Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes 65(3):755–767

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Kume S, Kitada M, Kanasaki K, Uzu T, Maegawa H, Koya D (2012) Autophagy as a therapeutic target in diabetic nephropathy. Exp Diabetes Res 2012: 628978

    Article  PubMed  CAS  Google Scholar 

  • Tang HW, Liao HM, Peng WH, Lin HR, Chen CH, Chen GC (2013) Atg9 interacts with dTRAF2/TRAF6 to regulate oxidative stress-induced JNK activation and autophagy induction. Dev Cell 27(5):489–503

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi M, Yoshida H (2015) Endoplasmic reticulum stress in kidney function and disease. Curr Opin Nephrol Hypertens 24(4):345–350

    Article  CAS  PubMed  Google Scholar 

  • Tkach M, Théry C (2016) Communication by extracellular vesicles: where we are and where we need to go. Cell 164(6):1226–1232

    Article  CAS  PubMed  Google Scholar 

  • Turco AE, Lam W, Rule AD, Denic A, Lieske JC, Miller VM, Larson JJ, Kremers WK, Jayachandran M (2016) Specific renal parenchymal-derived urinary extracellular vesicles identify age-associated structural changes in living donor kidneys. J Extracell Vesicles 5:29642

    Article  PubMed  CAS  Google Scholar 

  • Umezu T, Tadokoro H, Azuma K, Yoshizawa S, Ohyashiki K, Ohyashiki JH (2014) Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood 124(25):3748–3757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64(3):676–705

    Article  PubMed  CAS  Google Scholar 

  • Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334(6059):1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Wan G, Zhaorigetu S, Liu Z, Kaini R, Jiang Z, Hu CA (2008) Apolipoprotein L1, a novel Bcl-2 homology domain 3-only lipid-binding protein, induces autophagic cell death. J Biol Chem 283(31):21540–21549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Choi ME (2014) Autophagy in kidney health and disease. Antioxid Redox Signal 20(3):519–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Hong Q, Lv Y, Feng Z, Zhang X, Wu L, Cui S, Hou K, Su H, Huang Z, Wu D, Chen X (2012) Autophagy can repair endoplasmic reticulum stress damage of the passive Heymann nephritis model as revealed by proteomics analysis. J Proteomics 75(13):3866–3876

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Jia H, Zhang B, Wang J, Ji C, Zhu X, Yan Y, Yin L, Yu J, Qian H, Xu W (2017a) Pre-incubation with hucMSC-exosomes prevents cisplatin-induced nephrotoxicity by activating autophagy. Stem Cell Res Ther 8(1):75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang N, Tan HY, Li S, Feng Y (2017b) Atg9b deficiency suppresses autophagy and potentiates endoplasmic reticulum stress-associated hepatocyte apoptosis in hepatocarcinogenesis. Theranostics 7(8):2325–2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Jia H, Zhang B, Yin L, Mao F, Yu J, Ji C, Xu X, Yan Y, Xu W, Qian H (2018a) HucMSC exosome-transported 14-3-3ζ prevents the injury of cisplatin to HK-2 cells by inducing autophagy in vitro. Cytotherapy 20(1):29–44

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, Liu B, Su L, Qiu Z (2018b) Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasis. Cancer Res 78(16):4586–4598

    Article  CAS  PubMed  Google Scholar 

  • Wang YY, Tang LQ, Wei W (2018c) Berberine attenuates podocytes injury caused by exosomes derived from high glucose-induced mesangial cells through TGFβ1-PI3K/AKT pathway. Eur J Pharmacol 824:185–192

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Zhu G, He W, Yin H, Lin F, Gou X, Li X (2019) BMSCs protect against renal ischemia-reperfusion injury by secreting exosomes loaded with miR-199a-5p that target BIP to inhibit endoplasmic reticulum stress at the very early reperfusion stages. Faseb j 33(4):5440–5456

    Article  CAS  PubMed  Google Scholar 

  • Wiggins RC (2007) The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int 71(12):1205–1214

    Article  CAS  PubMed  Google Scholar 

  • Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13(3):269–288

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Feng Z, Cui S, Hou K, Tang L, Zhou J, Cai G, Xie Y, Hong Q, Fu B, Chen X (2013) Rapamycin upregulates autophagy by inhibiting the mTOR-ULK1 pathway, resulting in reduced podocyte injury. PLoS ONE 8(5):e63799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Gao Y, Xu L, Dang W, Yan H, Zou D, Zhu Z, Luo L, Tian N, Wang X, Tong Y, Han Z (2017) Exosomes from high glucose-treated glomerular endothelial cells trigger the epithelial−mesenchymal transition and dysfunction of podocytes. Sci Rep 7(1):9371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xing L, Liu Q, Fu S, Li S, Yang L, Liu S, Hao J, Yu L, Duan H (2015) PTEN inhibits high glucose-induced phenotypic transition in podocytes. J Cell Biochem 116(8):1776–1784

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Petermann A, Kunter U, Rong S, Shankland SJ, Floege J (2005) Urinary podocyte loss is a more specific marker of ongoing glomerular damage than proteinuria. J Am Soc Nephrol 16(6):1733–1741

    Article  CAS  PubMed  Google Scholar 

  • Zeng C, Fan Y, Wu J, Shi S, Chen Z, Zhong Y, Zhang C, Zen K, Liu Z (2014) Podocyte autophagic activity plays a protective role in renal injury and delays the progression of podocytopathies. J Pathol 234(2):203–213

    Article  CAS  PubMed  Google Scholar 

  • Zhang BB, Zhou G, Li C (2009) AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 9(5):407–416

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Zou X, Miao S, Chen J, Du T, Zhong L, Ju G, Liu G, Zhu Y (2014a) The anti-oxidative role of micro-vesicles derived from human Wharton−Jelly mesenchymal stromal cells through NOX2/gp91(phox) suppression in alleviating renal ischemia-reperfusion injury in rats. PLoS ONE 9(3):e92129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang MZ, Wang Y, Paueksakon P, Harris RC (2014b) Epidermal growth factor receptor inhibition slows progression of diabetic nephropathy in association with a decrease in endoplasmic reticulum stress and an increase in autophagy. Diabetes 63(6):2063–2072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Zhou X, Yao Q, Liu Y, Zhang H, Dong Z (2017) HIF-1-mediated production of exosomes during hypoxia is protective in renal tubular cells. Am J Physiol Renal Physiol 313(4):F906–Ff913

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Ma KL, Gong YX, Wang GH, Hu ZB, Liu L, Lu J, Chen PP, Lu CC, Ruan XZ, Liu BC (2018) Platelet microparticles mediate glomerular endothelial injury in early diabetic nephropathy. J Am Soc Nephrol 29(11):2671–2695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Kajiyama H, Tsuji T, Hu X, Leelahavanichkul A, Vento S, Frank R, Kopp JB, Trachtman H, Star RA, Yuen PS (2013a) Urinary exosomal Wilms’ tumor-1 as a potential biomarker for podocyte injury. Am J Physiol Renal Physiol 305(4):F553–F559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y, Zhang B, Wang M, Mao F, Yan Y, Gao S, Gu H, Zhu W, Qian H (2013b) Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther 4(2):34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Wang KZ, Chu CT (2013) After the banquet: mitochondrial biogenesis, mitophagy, and cell survival. Autophagy 9(11):1663–1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

BCS thank Prof. Qingshan Ma, Prof. Ping Luo and Prof. Kaishu Zhao for their constant encouragement, suggestions and support throughout.

Funding

Not available.

Author information

Authors and Affiliations

Authors

Contributions

BCS contributed in conceptualization and wrote the manuscript. SBZ and LZ equally contributed in reviewed the draft and made critical modifications. GDS was in charge of writing, and editing the manuscript. All authors had read and approved the final manuscript.

Corresponding author

Correspondence to Guangdong Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B., Zhai, S., Zhang, L. et al. The role of extracellular vesicles in podocyte autophagy in kidney disease. J. Cell Commun. Signal. 15, 299–316 (2021). https://doi.org/10.1007/s12079-020-00594-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-020-00594-z

Keywords

Navigation