Skip to main content
Log in

Cyclodextrin–epichlorohydrin polymers synthesis, characterization and applications to wastewater treatment: a review

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Proposed and studied in the mid-1960s, water-insoluble cyclodextrin–epichlorohydrin polymers are of constant interest to the scientific community, particularly for their environmental applications. The unique feature of these materials is their ability to form inclusion complexes with various pollutants through host–guest interactions. This leads to many environmental applications including water and wastewater treatment, soil remediation, air purification and the concentration or elimination of target substances such as cholesterol. In the early 1990s, our group began working on the synthesis of water-insoluble cyclodextrin-based materials, their structural characterization and their application in the removal of pollutants present in wastewater. Here I summarizes the research conducted over the past 30 years by our group on water-insoluble cyclodextrin–epichlorohydrin polymers used as complexing materials to remove pollutants present in aqueous solutions. Our major findings are: (i) the synthesis of a series of water-insoluble materials with different functionalities in the form of gels or beads; (ii) their characterization by innovative solid-state NMR techniques; (iii) the demonstration of their efficiency as adsorbents in wastewater treatment and the explanation of the pollutant removal mechanisms according to the type of material used; (iv) the demonstration of a correlation between the structure of polymers and their adsorption properties; (v) the feasibility of the materials for the removal of pollutants as a tertiary treatment of wastewater in pilot-scale experiments using real effluents; and (vi) the use for the first time of bioassays based on lettuce seed germination to evaluate the usefulness of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

13C NMR:

Carbon-13 nuclear magnetic resonance

CPMAS:

Cross-polarization magic-angle spinning with dipolar decoupling

dd-CPMAS:

CPMAS with dipolar dephasing

DD-MAS:

Magic-angle spinning with dipolar decoupling

DS:

Degree of substitution

ECH:

Epichlorohydrin

ECP:

Cyclodextrin–epichlorohydrin polymers

EPI:

Epichlorohydrin

HRMAS:

High-resolution magic-angle spinning

HOHAHA:

Homonuclear Hartmann–Hahn spectroscopy

HSQC:

Heteronuclear single quantum coherence spectroscopy

MAS:

Magic-angle spinning without dipolar decoupling

NMR:

Nuclear magnetic resonance

NOESY:

Nuclear Overhauser effect spectroscopy

TOCSY:

Total correlation spectroscopy

References

  • Arora D, Saneja A, Jaglan S (2019) Cyclodextrin-based delivery systems for dietary pharmaceuticals. Environ Chem Lett 17:1263–1270. https://doi.org/10.1007/s10311-019-00878-w

    Article  CAS  Google Scholar 

  • Badot PM, Comte E, E Gravier, Bernard-Brunel P, Fahys B, Crini G (2007) De l’amidon pour adsorber des colorants. In: Crini G (ed) traitement et épuration des eaux industrielles polluées: procédés membranaires, bioadsorption et oxydation chimique, chapter 5. Presses Universitaires de Franche-Comté, Besançon, pp 187–234. ISBN 978-2-84867-197-0

  • Belenguer-Sapiña C, Pellicer-Castell E, Mauri-Aucejo AR, Simó-Alfonso EF, Amorós P (2021) Cyclodextrins as key piece in nanostructured materials: quantitation and remediation of pollutants. Nanomaterials 11:7. https://doi.org/10.3390/nano11010007

    Article  CAS  Google Scholar 

  • Bertini S, Crini G, Naggi AM, Suardi R, Torri G, Vecchi C, Janus L, Martel B, Morcellet M (1999) Insoluble polymers with high amounts of β-CD: characterization and adsorption capacity. In: Torres Labandeira and Vila Jato JL (eds) Proceedings of the IX international symposium on cyclodextrins. Saint-Jacques-de-Compostelle, pp 175–178

  • Celebioglu A, Topuz F, Uyar T (2019) Water-insoluble hydrophilic electrospun fibrous mat of cyclodextrin-epichlorohydrin polymer as highly effective sorbent. Appl Polym Mater 1:54–62. https://doi.org/10.1021/acsapm.8b00034

    Article  CAS  Google Scholar 

  • Charles J, Sancey B, Trunfio G, Badot PM, De Carvalho M, Colin A, Rietmann M, Minary JF, Grosjean E, Crini G (2010) Pollutant removal from surface-treatment industry wastewaters by starch-based sorbents: chemical abatement and impact on water toxicity. In: Sorption process and pollution—conventional and non-conventional sorbents for pollutant removal from wastewaters, chapter 12. Presses Universitaires de Franche-Comté, Besançon, pp 313–334. ISBN 978-2-84867-304-2

  • Charles J, Crini G, Morin-Crini N, Badot PM, Trunfio G, Sancey B, de Carvalho M, Bradu C, Avramescu S, Winterton P, Gavoille S, Torri G (2014) Advanced oxidation (UV-ozone) and cyclodextrin sorption: effects of individual and combined action on the chemical abatement of organic pollutants in industrial effluents. J Taiwan Inst Chem Eng 45:603–608. https://doi.org/10.1016/j.jtice.2013.06.023

    Article  CAS  Google Scholar 

  • Charles J, Bradu C, Morin-Crini N, Sancey B, Winterton P, Torri G, Badot PM, Crini G (2016) Pollutant removal from industrial discharge water using individual and combined effects of adsorption and ion-exchange processes: chemical abatement. J Saudi Chem Soc 20:185–194. https://doi.org/10.1016/j.jscs.2013.03.007

    Article  CAS  Google Scholar 

  • Ching C, Klemes MJ, Trang B, Dichtel WR, Helbling DE (2020) β-cyclodextrin polymers with different cross-linkers and ion-exchange resins exhibit variable adsorption of anionic, zwitterionic, and nonionic PFASs. Environ Sci Technol 54:12693–12702. https://doi.org/10.1021/acs.est.0c04028

    Article  CAS  Google Scholar 

  • Cova TFGG, Murthino D, Pais AACC, Valente AJM (2018) Cyclodextrin-based materials for removing micropollutants from wastewater. Curr Org Chem 22:2146–2177. https://doi.org/10.2174/138527822666181019125315

    Article  Google Scholar 

  • Cova TF, Murthino D, Aguado R, Pais AACC, Valente AJM (2021) Cyclodextrin polymers and cyclodextrin-containing polysaccharides for water remediation. Polysaccharides 2:16–38. https://doi.org/10.3390/polysaccharides2010002

    Article  Google Scholar 

  • Crini G (1995) Nouvelles phases stationnaires à base de cyclodextrine: applications à différentes séparations en chromatographie liquide haute performance. PhD, Université de Lille, p 1

  • Crini G (2003) Studies on adsorption of dyes on beta-cyclodextrin polymer. Bioresour Technol 90:193–198. https://doi.org/10.1016/S0960-8524(03)00111-1

    Article  CAS  Google Scholar 

  • Crini G (2005a) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70. https://doi.org/10.1016/j.progpolymsci.2004.11.002

    Article  CAS  Google Scholar 

  • Crini (2005b) Method for making a gel-type compound for treating effluent. French Patent PCT/FR2006/050549, WO2006/134299

  • Crini G (2006) Non-conventional low-cost adsorbents for dye removal. Bioresour Technol 97:1061–1085. https://doi.org/10.1016/j.biortech.2005.05.001

    Article  CAS  Google Scholar 

  • Crini G (2008) Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer. Dyes Pigments 77:415–426. https://doi.org/10.1016/j.dyepig.2007.07.001

    Article  CAS  Google Scholar 

  • Crini G (2014) Review: a history of cyclodextrins. Chem Rev 114:10940–10975. https://doi.org/10.1021/cr500081p

    Article  CAS  Google Scholar 

  • Crini G (2015a) Non-conventional adsorbents for dye removal. In: Sharma SK (ed) Green chemistry for dyes removal form wastewater, chapter 10. Scrivener Publishing LLC, Beverly, pp 359–407. ISBN 978-1-118-72099-8

  • Crini G (2015b) Histoire des cyclodextrines, chapter 1. In: Morin-Crini N, Fourmentin S, Crini G (eds) Cyclodextrines—histoire, propriétés, chimie et applications. Presses Universitaires de Franche-Comté, Besançon, pp 19–56. ISBN 978-2-84867-520-6

  • Crini G (2020) Water-insoluble cyclodextrin–epichlorohydrin polymers. In: Crini G, Fourmentin S, Lichtfouse E (eds) The history of cyclodextrins, Chapter 8. Springer International Publishing, Cham, pp 345–394. https://doi.org/10.1007/978-3-030-49308-8

    Chapter  Google Scholar 

  • Crini G, Badot PM (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33:399–447. https://doi.org/10.1016/j.progpolymsci.2007.11.001

    Article  CAS  Google Scholar 

  • Crini G, Morcellet M (2002) Synthesis and applications of adsorbents containing cyclodextrins. J Sep Sci 25:789–813. https://doi.org/10.1002/1615-9314(20020901)25:13%3c789::AID-JSSC789%3e3.0.CO;2-J

    Article  CAS  Google Scholar 

  • Crini G, Peindy HN (2006) Adsorption of C.I. Basic Blue 9 on cyclodextrin-based material containing carboxylic groups. Dyes Pigments 70:204–211. https://doi.org/10.1016/j.dyepig.2005.05.004

    Article  CAS  Google Scholar 

  • Crini G, Lekchiri Y, Morcellet M (1995a) Separation of structural isomers on cyclodextrin-polymers coated on silica beads. Chromatographia 40:296–302. https://doi.org/10.1007/BF02290360

    Article  CAS  Google Scholar 

  • Crini G, Torri G, Lekchiri Y, Martel B, Janus L, Morcellet M (1995b) High performance liquid chromatography of structural isomers using a cyclodextrin-poly(allylamine) coated silica column. Chromatographia 41:424–430. https://doi.org/10.1007/BF02318617

    Article  CAS  Google Scholar 

  • Crini G, Martel B, Torri G, Morcellet M (1996) HPLC of structural isomers using cyclodextrin systems coated on silica bead. In: Szejtli J, Szente L (eds) Proceedings of the VIII international symposium on cyclodextrins, Budapest, Hungary, March 31–April 2, 1996. Springer, Berlin, pp 667–670

  • Crini G, Cosentino C, Bertini S, Naggi AM, Torri G, Vecchi C, Janus L, Morcellet M (1998a) Solid state NMR study of molecular motions in cyclomaltoheptaoses (β-cyclodextrins) crosslinked with epichlorohydrin. Carbohydr Res 308:37–45. https://doi.org/10.1016/S0008-6215(98)00077-9

    Article  CAS  Google Scholar 

  • Crini G, Bertini S, Torri G, Naggi AM, Sforzini D, Vecchi C, Janus L, Lekchiri Y, Morcellet M (1998b) Sorption of aromatic compounds in water using insoluble cyclodextrin polymers. J Appl Polym Sci 68:1973–1978. https://doi.org/10.1002/(SICI)1097-4628(19980620)68:12%3c1973::AID-APP11%3e3.0.CO;2-T

    Article  CAS  Google Scholar 

  • Crini G, Bourdonneau M, Martel B, Piotto M, Morcellet M, Richert T, Vebrel J, Torri G, Morin N (2000) Solid state NMR characterisation of cyclomaltoheptaose (beta-cyclodextrin) polymers using high resolution magic angle spinning with gradients. J Appl Polym Sci 75:1288–1295. https://doi.org/10.1002/(SICI)1097-4628(20000307)75:10%3c1288::AID-APP10%3e3.0.CO;2-J

    Article  CAS  Google Scholar 

  • Crini G, Morcellet M, Morin N (2001) Quelques applications des complexes d’inclusion cyclodextrine/substrat. Act Chim 11:18–25

    Google Scholar 

  • Crini G, Morin N, Rouland JC, Janus L, Morcellet M, Bertini S (2002) Adsorption de béta-naphtol sur des gels de cyclodextrines-carboxyméthylcelluloses réticulés. Eur Polym J 38:1095–1103. https://doi.org/10.1016/S0014-3057(01)00298-1

    Article  CAS  Google Scholar 

  • Crini G, Morin-Crini N, Badot PM (2003) Adsorption de dérivés aromatiques par des gels de cyclodextrines. Hydrosciences 8:58–61

    Google Scholar 

  • Crini G, Peindy HN, Gimbert F, Robert C (2007) Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies. Sep Purif Technol 53:97–110. https://doi.org/10.1016/j.seppur.2006.06.018

    Article  CAS  Google Scholar 

  • Crini G, Exposito AS, Rocchi S, Jeanvoine A, Fourmentin M, Millon L, Morin-Crini N (2017) Simultaneous removal of five triazole fungicides from synthetic solutions on activated carbons and cyclodextrin-based adsorbents. Heliyon 3:e00380. https://doi.org/10.1016/j.heliyon.2017.e00380

    Article  Google Scholar 

  • Crini G, Fourmentin S, Fenyvesi É, Torri G, Fourmentin M, Morin-Crini N (2018a) Fundamentals and applications of cyclodextrins. In: Fourmentin F, Crini G, Lichtfouse É (eds) Cyclodextrins fundamentals, reactivity and analysis, environmental chemistry for a sustainable world, volume 1, chapter 1. Springer Nature, Cham, pp 1–55. ISBN: 978-3-319-76159-6_1

  • Crini G, Fourmentin S, Fenyvesi É, Torri G, Fourmentin M, Morin-Crini N (2018b) Cyclodextrins—from molecules to applications. Environ Chem Lett 16:1361–1375. https://doi.org/10.1007/s10311-018-0763-2

    Article  CAS  Google Scholar 

  • Crini G, Fourmentin S, Morin-Crini N, Fourmentin M (2019a) Principales applications des complexes d’inclusion cyclodextrine-substrat. In: techniques de l’ingénieur, collection recherché et innovation, ref. IN232v1, pp 1–16

  • Crini G, Lichtfouse E, Wilson LD, Morin-Crini N (2019b) Conventional and non-conventional adsorbents for wastewater treatment. Environ Chem Lett 17:145–155. https://doi.org/10.1007/s10311-018-0785-9

    Article  CAS  Google Scholar 

  • Crini G, Fourmentin S, Lichtfouse E (2020) The history of cyclodextrins. Environmental chemistry for a sustainable world 52. Springer Nature Switzerland, Cham. ISBN: 978-3-030-49307-3

  • Danquah MK, Aruei RC, Wilson LD (2018) Phenolic pollutant uptake properties of molecular templated polymers containing beta-cyclodextrin. J Phys Chem B 122:4748–4757. https://doi.org/10.1021/acs.jpcb.8b01819

    Article  CAS  Google Scholar 

  • Delval F, Crini G, Bertini S, Filiatre C, Torri G (2005) Preparation, characterization and sorption properties of crosslinking starch-based exchangers. Carbohydr Polym 60:67–75. https://doi.org/10.1016/j.carbpol.2004.11.025

    Article  CAS  Google Scholar 

  • Duan Z, Wei S, Bian H, Guan CD, Zhu L, Xia DH (2021) Inclusion as an efficient purification method for specific removal of tricyclic organic sulfur/nitrogen pollutants in fuel and effluent with cyclodextrin polymers. Sep Purif Technol 254:117643. https://doi.org/10.1016/j.seppur.2020.117643

    Article  CAS  Google Scholar 

  • Erdős M, Hartkamp R, Vlugt TJH, Moultos OA (2020) Inclusion complexation of organic micropollutants with β-cyclodextrin. J Phys Chem B 124:1218–1228. https://doi.org/10.1021/acs.jpcb.9b10122

    Article  CAS  Google Scholar 

  • Euvrard É, Morin-Crini N, Bradu C, Gavoille S, Winterton P, Lagarrigue C, Hutinet X, Trunfio, G, Torri G, Druart C, Poupeney A, Avramescu S, Fourmentin S, Crini G (2015) Polymères réticulés de cyclodextrine: complexation de substances émergentes et mécanismes d’adsorption. In: Morin-Crini, Fourmentin S, Crini (eds) Cyclodextrines—histoire, propriétés, chimie et applications, chapter 13. PUFC, Besançon, pp 279–300. ISBN 978–2–84867–520–6

  • Euvrard É, Morin-Crini N, Druart C, Bugnet J, Martel B, Cosentino C, Moutarlier V, Crini G (2016) Cross-linked cyclodextrin-based material for treatment of metals and organic substances present in industrial discharge waters. Beilstein J Org Chem 12:1826–1838. https://doi.org/10.3762/bjoc.12.172

    Article  CAS  Google Scholar 

  • Euvrard É, Morin-Crini N, Martel B, Cosentino C, Crini G (2017) Cyclodextrines réticulées pour traiter des eaux contaminées. In: Morin-Crini, Crini G (eds) eaux industrielles contaminées, chapter 12. PUFC, Besançon, pp 341–371. ISBN 978-2-84867-589-3

  • Fenyvesi É, Barkács K, Gruiz K, Varga E, Kenyeres I, Záray G, Szente L (2020) Removal of hazardous micropollutants from treated wastewater using cyclodextrin bead polymer—a pilot demonstration case. J Hazard Mater 383:121181. https://doi.org/10.1016/j.jhazmat.2019.121181

    Article  CAS  Google Scholar 

  • Fourmentin S, Morin-Crini N, Crini G (2015) Cyclodextrines et complexes d’inclusion. In: Morin-Crini N, Fourmentin S, Crini G (eds) Cyclodextrines—histoire, propriétés, chimie et applications, chapter 2. Presses Universitaires de Franche-Comté, Besançon, pp 57–84. ISBN 978-2-84867-520-6

  • Fourmentin S, Crini G, Lichtfouse É (eds) (2018a) Cyclodextrin fundamentals, reactivity and analysis, environmental chemistry for a sustainable world. Springer, Berlin. https://doi.org/10.1007/978-3-319-76159-6

    Book  Google Scholar 

  • Fourmentin S, Crini G, Lichtfouse É (eds) (2018b) Cyclodextrin applications in medicine, food, environment and liquid crystals, environmental chemistry for a sustainable world. Springer, Berlin. https://doi.org/10.1007/978-3-319-76162-6

    Book  Google Scholar 

  • García-Zubiri IX, González-Gaitano G, Isasi JR (2006) Thermal stability of solid dispersions of naphthalene derivatives with β-cyclodextrin and β-cyclodextrin polymers. Thermochim Acta 444:57–64. https://doi.org/10.1016/j.tca.2006.02.024

    Article  CAS  Google Scholar 

  • Gentili A (2020) Cyclodextrin-based sorbents for solid phase extraction. J Chromatogr A 1609:460654. https://doi.org/10.1016/j.chroma.2019.460654

    Article  CAS  Google Scholar 

  • Gidwani B, Vyas A (2014) Synthesis, characterization and application of epichlorohydrin-β-cyclodextrin polymer. Colloids Surf B Biointerface 114:130–137. https://doi.org/10.1016/j.colsurfb.2013.09.035

    Article  CAS  Google Scholar 

  • Gimbert F, Morin-Crini N, Renault F, Badot PM, Crini G (2008) Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: error analysis. J Hazard Mater 157:34–46. https://doi.org/10.1016/j.jhazmat.2007.12.072

    Article  CAS  Google Scholar 

  • Hoffman JL (1970) Chromatography of nucleic acid components on cyclodextrin gels. Anal Biochem 3:209–217. https://doi.org/10.1016/0003-2697(70)90288-5

    Article  Google Scholar 

  • Hoffman JL (1972) Chromatography of nucleic acids on cross-linked cyclodextrin gels having inclusion-forming capacity. Abstr Pap Am Chem Soc 164:47–47

    Google Scholar 

  • Hoffman JL (1973) Chromatography of nucleic acids on cross-linked cyclodextrin gels having inclusion-forming capacity. J Macromol Sci Chem A7:1147–1157. https://doi.org/10.1080/10601327308060488

    Article  Google Scholar 

  • Huang Q, Chai K, Zhou L, Ji H (2020) A phenyl-rich β-cyclodextrin porous crosslinked polymer for efficient removal of aromatic pollutants: insight into adsorption performance and mechanism. Chem Eng J 387:124020. https://doi.org/10.1016/j.cej.2020.124020

    Article  CAS  Google Scholar 

  • Janus L, Crini G, El-Rezzi V, Morcellet M, Cambiaghi A, Torri G, Naggi AM, Vecchi C (1999) New sorbents containing beta-cyclodextrin. Synthesis, NMR characterization and preliminary sorption properties. React Funct Polym 42:173–180

    Article  CAS  Google Scholar 

  • Jurecska L, Dobosy P, Barkács K, Fenyvesi É, Gy Z (2014) Characterization of cyclodextrin containing nanofilters for removal of pharmaceutical residues. J Pharm Biomedical Anal 98:90–93. https://doi.org/10.1016/j.jpba.2014.05.007

    Article  CAS  Google Scholar 

  • Kfoury M, Auezova L, Greige-Gerges H, Fourmentin S (2019) Encapsulation in cyclodextrins to widen the applications of essential oils. Environ Chem Lett 17:129–143. https://doi.org/10.1007/s10311-018-0783-y

    Article  CAS  Google Scholar 

  • Klemes MJ, Skala LP, Ateia M, Trang B, Helbling DE, Dichtel WR (2020) Polymerized molecular receptors as adsorbents to remove micropollutants from water. Acc Chem Res 53:2314–2324. https://doi.org/10.1021/acs.accounts.0c00426

    Article  CAS  Google Scholar 

  • Kumari P, Singh P, Singhal A, Alka (2020) Cyclodextrin-based nanostructured materials for sustainable water remediation applications. Environ Sci Pollut Res 27:32432–32448. https://doi.org/10.1007/s11356-020-09519-0

    Article  CAS  Google Scholar 

  • Lee JH, Kwak SY (2020) Branched polyethylenimine-polyethylene glycol-β-cyclodextrin polymers for efficient removal of bisphenol A and copper from wastewater. J Appl Polym Sci 137:48475. https://doi.org/10.1002/app.48475

    Article  CAS  Google Scholar 

  • Li XH, Hao XK (2019) Study of adsorption of nitrophenols from aqueous solution using ECDMZ. Adv Energy Sci Environ Eng III 2106:020007. https://doi.org/10.1063/1.5109330

    Article  CAS  Google Scholar 

  • Li X, Nie XJ, Zhu YN, Ye WC, Jiang YL, Su SL, Yan BT (2019) Adsorption behaviour of Eriochrome Black T from water onto a cross-linked beta-cyclodextrin polymer. Colloids Surf A Physicochem Eng Asp 578:123582. https://doi.org/10.1016/j.colsurfa.2019.123582

    Article  CAS  Google Scholar 

  • Liu Q, Zhou Y, Lu J, Zhou Y (2020) Novel cyclodextrin-based adsorbents for removing pollutants from wastewater: a critical review. Chemosphere 241:125043. https://doi.org/10.1016/j.chemosphere.2019.125043

    Article  CAS  Google Scholar 

  • Lü Q, Gong H, Wang R (2018) Synthesis of β-cyclodextrin/epichlorohydrin polymer and its adsorption properties for bisphenol S. Res Environ Sci 31:1933–1939. https://doi.org/10.13198/j.issn.1001-6929.2018.07.03

    Article  Google Scholar 

  • Mohamed MH, Wilson LD, Headley JV (2010) Estimation of the surface accessible inclusion sites of β-cyclodextrin based copolymer materials. Carbohydr Polym 80:186–196. https://doi.org/10.1016/j.carbpol.2009.11.014

    Article  CAS  Google Scholar 

  • Mohamed MH, Wilson LD, Pratt DY, Guo R, Wu C, Headley JV (2012) Evaluation of the accessible inclusion sites in copolymer materials containing beta-cyclodextrin. Carbohydr Polym 87:1241–1248. https://doi.org/10.1016/j.carbpol.2011.09.011

    Article  CAS  Google Scholar 

  • Morin-Crini N, Crini G (2012) Review of current physical and chemical technologies for the decontamination of industrial wastewater. Int J Chem Eng 5:143–186

    Google Scholar 

  • Morin-Crini N, Crini G (2013) Environmental applications of water-insoluble β-cyclodextrin-epichlorohydrin polymers. Prog Polym Sci 38:344–368. https://doi.org/10.1016/j.progpolymsci.2012.06.005

    Article  CAS  Google Scholar 

  • Morin-Crini N, Fourmentin S, Crini G (eds) (2015) Cyclodextrines. PUFC, Besançon. ISBN: 978-2-84867-520-6

  • Morin-Crini N, Winterton P, Fourmentin S, Wilson LD, Fenyvesi É, Crini G (2018a) Water-insoluble β-cyclodextrin-epichlorohydrin polymers for removal of pollutants from aqueous solutions by sorption processes using batch studies: a review of inclusion mechanism. Prog Polym Sci 78:1–23. https://doi.org/10.1016/j.progpolymsci.2017.07.004

    Article  CAS  Google Scholar 

  • Morin-Crini N, Fourmentin M, Fourmentin S, Torri G, Crini G (2018b) Silica materials containing cyclodextrin for pollutant removal. In: Fourmentin F, Crini G, Lichtfouse É (eds) Cyclodextrins applications in medicine, food, environment and liquid crystals, environmental chemistry for a sustainable world, volume 2, chapter 6. Springer Nature, Cham, pp 149–182. https://doi.org/10.1007/978-3-319-76162-6

    Chapter  Google Scholar 

  • Morin-Crini N, Fourmentin M, Fourmentin S, Torri G, Crini G (2019a) Synthesis of silica materials containing cyclodextrin and their applications in wastewater treatment. Environ Chem Lett. https://doi.org/10.1007/s10311-018-00818-0

    Article  Google Scholar 

  • Morin-Crini N, Badot PM, Crini G (2019b) Complémentarité des outils scientifiques pour évaluer la toxicité de rejets industriels. Techniques de l’Ingénieur, Collection Recherche et Innovation, RE184v1, pp 1–17

  • Murcia-Salvador A, Pellicer JA, Fortea MI, Gomez-Lopez VM, Rodriguez-Lopez MI, Nunez-Delicado E, Gabaldon JA (2019) Adsorption of Direct Blue 78 using chitosan and cyclodextrins as adsorbents. Polymers 11:1003. https://doi.org/10.3390/polym11061003

    Article  CAS  Google Scholar 

  • Nagy ZM, Molnár M, Fekete-Kertész I, Molnár-Perl I, Fenyvensi E, Gruiz K (2014) Removal of emerging micropollutants from water using cyclodextrin. Sci Total Environ 485–486:711–719. https://doi.org/10.1016/j.scitotenv.2014.04.003

    Article  CAS  Google Scholar 

  • Orprecio R, Evans CH (2003) Polymer-immobilized cyclodextrin trapping of model organic pollutants in flowing water streams. J Appl Polym Sci 90:2103–2110. https://doi.org/10.1002/app.12818

    Article  CAS  Google Scholar 

  • Pellicer JA, Rodríguez-López MI, Fortea MI, Gómez-López VM, Auñón D, Núñez-Delicado E, Gabaldón JA (2020) Synthesis of new cyclodextrin-based adsorbents to remove Direct Red 83:1. Polymers 12:1880. https://doi.org/10.3390/polym12091880

    Article  CAS  Google Scholar 

  • Pratt DY, Wilson LD, Kozinski JA, Mohart AM (2010) Preparation and sorption studies of β-cyclodextrin/epichlorohydrin copolymers. J Appl Polym Sci 116:2982–2989. https://doi.org/10.1002/app.31824

    Article  CAS  Google Scholar 

  • Priac A, Morin-Crini N, Druart C, Gavoille S, Bradu C, Lagarrigue C, Torri G, Winterton P, Crini G (2017) Alkylphenol and alkylphenol polyethoxylates in water and wastewater: a review of their options for their elimination. Arab J Chem 10:S3749–S3773. https://doi.org/10.1016/j.arabjc.2014.05.011

    Article  CAS  Google Scholar 

  • Qin XM, Bai L, Tan YZ, Li L, Song F, Wang YZ (2019) β-Cyclodextrin-crosslinked polymeric adsorbent for simultaneous removal and stepwise recovery of organic dyes and heavy metal ions: fabrication, performance and mechanisms. Chem Eng J 372:1007–1018. https://doi.org/10.1016/j.cej.2019.05.006

    Article  CAS  Google Scholar 

  • Qu JH, Yuan YH, Meng QJ, Zhang GS, Deng FX, Wang L, Tao Y, Jiang Z, Zhang Y (2020) Simultaneously enhanced removal and stepwise recovery of atrazine and Pb(II) from water using β-cyclodextrin functionalized cellulose: characterization, adsorptive performance and mechanism exploration. J Hazard Mater 400:123142. https://doi.org/10.1016/j.jhazmat.2020.123142

    Article  Google Scholar 

  • Renard E, Deratani A, Volet G, Sébille B (1997) Preparation and characterization of water soluble high molecular beta-cyclodextrin-epichlorohydrin polymers. Eur Polym J 33:49–57. https://doi.org/10.1016/S0014-3057(96)00123-1

    Article  CAS  Google Scholar 

  • Renault F, Morin-Crini N, Gimbert F, Badot PM, Crini G (2008) Cationized starch-based material as a new ion-exchanger adsorbent for the removal of C.I. Acid Blue 25 from aqueous solutions. Bioresour Technol 99:7573–7586. https://doi.org/10.1016/j.biortech.2008.02.011

    Article  CAS  Google Scholar 

  • Romita R, Rizzi V, Semeraro P, Gubitosa J, Gabaldón JA, Gorbe MIF, López VMG, Cosma P, Fini P (2019) Operational parameters affecting the atrazine removal from water by using cyclodextrin based polymers as efficient adsorbents for cleaner technologies. Environ Technol Innov 16:100454. https://doi.org/10.1016/j.eti.2019.100454

    Article  Google Scholar 

  • Romo A, Peñas FJ, Isasi JR (2004) Sorption of dibenzofuran derivatives from aqueous solutions by β-cyclodextrin polymers: an isosteric heat approach. J Colloid Interface Sci 279:55–60. https://doi.org/10.1016/j.jcis.2004.06.043

    Article  CAS  Google Scholar 

  • Romo A, Peñas FJ, Sevillano X, Isasi JR (2006) Application of factorial experimental design to the study of the suspension polymerization of β-cyclodextrin and epichlorohydrin. J Appl Polym Sci 100:3393–3402. https://doi.org/10.1002/app.23778

    Article  CAS  Google Scholar 

  • Romo A, Peñas FJ, Isasi JR, Garcia-Zubiri IX, Gonzalez-Gaitano G (2008) Extraction of phenols from aqueous solutions by β-cyclodextrin polymer. Comparison of sorptive capacities with other sorbents. React Funct Polym 68:406–413. https://doi.org/10.1016/j.reactfunctpolym.2007.07.005

    Article  CAS  Google Scholar 

  • Sancey B, Crini G (2012) Décontamination des effluents de traitement de surface par oxydation/bioadsorption sur cyclodextrine. In: Techniques de l’Ingénieur, Collection Recherche and Innovation, pp 8–12

  • Sancey B, Crini G, Trunfio G, Morin-Crini N, Torri G (2010) Cross-linked cyclodextrins for pollutant removal. In: Crini G, Badot PM (eds) Sorption process and pollution—conventional and non-conventional sorbents for pollutant removal from wastewaters, chapter 15. PUFC, Besançon, pp 387–400. ISBN 978-2-84867-304-2

  • Sancey B, Trunfio G, Charles J, Badot PM, Crini G (2011a) Sorption onto crosslinked cyclodextrin polymers for industrial pollutants removal: an interesting environmental approach. J Incl Phenom Macrocycl Chem 70:315–320. https://doi.org/10.1007/s10847-010-9841-1

    Article  CAS  Google Scholar 

  • Sancey B, Charles J, Trunfio G, Badot PM, Jacquot M, Hutinet X, Gavoille S, Crini G (2011b) Effects of additional sorption treatment of industrial water discharge by cross-linked starch. Ind Eng Chem Res 50:1749–1756. https://doi.org/10.1021/ie1010492

    Article  CAS  Google Scholar 

  • Sancey B, Trunfio G, Charles J, Minary JF, Gavoille S, Badot PM, Crini G (2011c) Heavy metals removal from industrial effluents by adsorption on crosslinked starch: chemical study and impact on water toxicity. J Environ Manag 92:765–772. https://doi.org/10.1016/j.jenvman.2010.10.033

    Article  CAS  Google Scholar 

  • Sancey B, Bradu C, Torri G, Crini G (2012) Cross-linked polysaccharides as adsorbents for industrial pollutant removal. In: Proceedings of the 5th European symposium biopolymers diversity and industrial applications perspectives, Rennes, pp 36–41

  • Shao Y, Martel B, Morcellet M, Weltrowski M, Crini G (1996) Sorption of textile dyes on beta-cyclodextrin–epichlorohydrin gels. J Incl Phenom Mol Recognit Chem 25:209–212

    Article  CAS  Google Scholar 

  • Sikder MT, Rahman MM, Jakariya M, Hosokawa T, Kurasaki M, Saito T (2019) Remediation of water pollution with native cyclodextrins and modified cyclodextrins: a comparative overview and perspectives. Chem Eng J 355:920–941. https://doi.org/10.1016/j.cej.2018.08.218

    Article  CAS  Google Scholar 

  • Solms J (1966) Société des Produits Nestlé S.A., Chem. Abstr. 1966; 64:16687; Netherlands Patent 6,505,361; 1964/1965; British Patent 1,091,637; 1967

  • Solms J (1967) Inclusion resins. Nestle’s Prod. Ltd. British Patent 1,091,637

  • Solms J (1969) Inclusion resins of cyclodextrin and methods of use. US Patent 3,420,788

  • Szejtli J (1980) Complexing properties of substituted cyclodextrins and cyclodextrin polymers in aqueous-solutions. Abstr Pap Am Chem Soc 179:65–66

    Google Scholar 

  • Szejtli J (1982) Cyclodextrins and their inclusion complexes. Akadémiai Kiadó, Budapest, p 296. ISBN: 963 05 2850 9

  • Szejtli J (1984) Highly soluble β-cyclodextrin derivatives. Starch/Stärke 36:429–432. https://doi.org/10.1002/star.19840361207

    Article  CAS  Google Scholar 

  • Szejtli J (1988) Cyclodextrin technology. Kluwer Academic Publishers, Dordrecht, p 450. ISBN: 90-277-2314-1

  • Solms J, Egli RH (1964) Abstracts sixth international Congress of biochemistry, New-York, p 180

  • Solms J, Egli RH (1965) Harze mit einschlusshohlräumen von cyclodextrin-struktur. Helv Chim Acta 48:1225–8

    Article  CAS  Google Scholar 

  • Szejtli J, Fenyvesi É, Zsadon B (1978) Cyclodextrinpolymere. Starch/Stärke 30:127–131. https://doi.org/10.1002/star.19780300407

    Article  CAS  Google Scholar 

  • Szemán J, Fenyvesi É, Szejtli J, Ueda H, Machida Y, Nagai T (1987) Water-soluble cyclodextrin polymers—their interaction with drugs. J Incl Phenom 5:427–431. https://doi.org/10.1007/BF00664098

    Article  Google Scholar 

  • Tian B, Hua S, Tian Y, Liu J (2020) Cyclodextrin-based adsorbents for the removal of pollutants from wastewater: a review. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-11168-2

    Article  Google Scholar 

  • Vecchi C, Bertini S, Crini G, Naggi AM, Torri G (1998) Polymers of cyclodextrins can adsorb pollutants: evaluation of their adsorption capacity and characterization. Rivista dei Combustibili 52:231–236

    CAS  Google Scholar 

  • Vélaz I, Isasi JR, Sanchez M, Uzqueda M, Ponchel G (2007) Structural characteristics of some soluble and insoluble β-cyclodextrin polymers. J Incl Phenom Macrocycl Chem 57:65–68. https://doi.org/10.1007/s10847-006-9221-z

    Article  CAS  Google Scholar 

  • Wiedenhof N (1969) Properties of cyclodextrins. Part IV: features and use of insoluble cyclodextrin–epichlorohydrin-resins. Starch/Stärke 21:163–166. https://doi.org/10.1002/star.19690210606

    Article  CAS  Google Scholar 

  • Wiedenhof N, Trieling RG (1971) Properties of cyclodextrins. Part V. Inclusion isotherms and kinetics of inclusion of benzoic acid and m-chlorobenzoic acid on β-E25 cyclodextrin–epichlorohydrin resin. Die Stärke 23:129–132. https://doi.org/10.1002/star.19710230405

    Article  CAS  Google Scholar 

  • Wiedenhof N, Lammers JNJJ, van Panthaleo van Eck CL (1969) Properties of cyclodextrins. Part III. Cyclodextrin–epichlorohydrin resins: preparation and analysis. Die Stärke 21:119–123. https://doi.org/10.1002/star.19690210504

    Article  CAS  Google Scholar 

  • Wiedenhof N, van Panthaleon van Eck CL, Lammers JNJJ (1971) Cyclodextrins derivatives. British patent 1,244,990

  • Wilson LD, Mohamed MH, Guo R, Pratt DY, Kwon JH, Mahmud ST (2010) Sorption of agrochemical model compounds by sorbent materials containing beta-cyclodextrin. J Agromed 15:105–116. https://doi.org/10.1080/10599241003618770

    Article  Google Scholar 

  • Xiao LL, Ching C, Ling YH, Nasiri M, Klemes MJ, Reineke TM, Helbling DE, Dichtel WR (2019) Cross-linker chemistry determines the uptake potential of perfluorinated alkyl substances by beta-cyclodextrin polymers. Macromolecules 52:3747–3752. https://doi.org/10.1021/acs.macromol.9b00417

    Article  CAS  Google Scholar 

  • Xu GH, Xie XC, Qin L, Hu XJ, Zhang D, Xu J, Li D, Ji XW, Huang Y, Tu Y, Jiang L, Wei DY (2019) Simple synthesis of a swellable porous β-cyclodextrin-based polymer in the aqueous phase for the rapid removal of organic micro-pollutants from water. Green Chem. https://doi.org/10.1039/c9gc02422k

    Article  Google Scholar 

  • Yilmaz Ozmen E, Yilmaz M (2007) Use of beta-cyclodextrin and starch based polymers for sorption of Congo red from aqueous solutions. J Hazard Mater 148:303–310. https://doi.org/10.1016/j.jhazmat.2007.02.042

    Article  CAS  Google Scholar 

  • Yilmaz Ozmen E, Sezgin M, Yilmaz A, Yilmaz M (2008) Synthesis of beta-cyclodextrin and starch based polymers for sorption of azo dyes from aqueous solutions. Bioresour Technol 99:526–531. https://doi.org/10.1016/j.biortech.2007.01.023

    Article  CAS  Google Scholar 

  • Zhang H, Zhang Y, Cheng BW, Li YX, Zhou S (2019) Preparing gamma-cyclodextrin-immobilized starch and the study of its removal properties to dyestuff from wastewater. Polish J Environ Stud 28:1701–1711. https://doi.org/10.15244/pjoes/90028

    Article  Google Scholar 

  • Zhou YB, Lu J, Zhou Y, Liu YD (2019) Recent advances for dyes removal using novel adsorbents: a review. Environ Pollut 252:352–365. https://doi.org/10.1016/j.envpol.2019.05.072

    Article  CAS  Google Scholar 

  • Zohrehvand S, Evans CH (2005) 2-Naphthol-containing β-cyclodextrin-epichlorohydrin copolymers: synthesis, characterization and fluorescence studies. Polym Int 54:744–753. https://doi.org/10.1002/pi.1747

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The solid-state NMR spectroscopy of cyclodextrins was my entrance to the world of oligosaccharides and polysaccharides and a lot of what I know I owe to my two scientific mentors, Professor Michel Morcellet (Laboratoire de Chimie Macromoléculaire, Lille, France), and Research Director Giangiacomo Torri (Istituto di Chimica e Biochimica G. Ronzoni, Milan, Italy), to whom I would like to express my immense gratitude. This review is dedicated to them in recognition of their constant inspiration and for their excellent spirit of cooperation, unlimited enthusiasm and great friendship. I am also particularly grateful to all those who have contributed to this work through several friendly and fruitful National, European and International collaborations, with particular attention to Dr. Nadia Morin-Crini (Besançon, France), Pr. Benito Casu (Milan, Italy), Pr. Yahya Lekchiri (Oudja, Morocco), Pr. Bernard Martel (Lille, France), Mr. Cesare Cosentino (Milan, Italy), Dr. Carmen Vecchi (Milan, Italy), Dr. Marco Guerrini (Milan, Italy), Dr. Anna-Maria Naggi (Milan, Italy), Pr. Edwin Yates (Liverpool, UK), Dr. Marcella Chiari (Milan, Italy), Dr. Peter Winterton (Toulouse, France), Dr. Corina Bradu (Bucharest, Romania), Dr. Bruno Perly (Gif-sur-Yvette, France), Pr. Joëlle Morcellet (Lille, France), Dr. Ludovic Janus (Lille, France), Pr. Joël Vebrel (Besançon, France), Pr. Pierre-Marie Badot (Besançon, France), Dr. Sophie Gavoille (Besançon, France), Mr. Xavier Hutinet (Champlitte, France), Mr. Jean-François Minary (Devecey, France), Dr. Danielle Bonenfant (Montréal, Canada), Pr. Elena Vismara (Milan, Italy), Dr. Giuseppe Trunfio (Messina, Italy), Pr. Robert Haussler (Montréal, Canada), Pr. Sophie Fourmentin (Dunkerque, France), Dr. Marc Fourmentin (Dunkerque, France), Pr. Eric Lichtfouse (Aix-Marseille, France), Pr. Lee D. Wilson (Saskatchewan, Canada), Dr. Éva Fenyvesi (Budapest, Hungary), Dr. Vincent Placet (Besançon, France) and Pr. Andrei Sarbu (Bucharest, Romania). I would also like to thank all the PhD students (Sabrina Bertini, Davide Sforzini, Angelo Cambiaghi, Yvan Lunghi, Angelo Ficaro, Roberta Suardi, Alessandro Ficarra, Nadia Morin, Mustapha Quendouchen, Frank Delval, Olivier Adam, François Renault, Bertrand Sancey, Jérémie Charles, Anne Priac, Elise Euvrard) and postdoctoral fellows (Harmel N. Peindy, Capucine Robert, Tran Phan, Giuseppe Trunfio, Lucian Staicu, Sonia Loiacono, Chiara Mongiovi) who have worked on this topic. Finally, I would like to sincerely thank the industrialists (SILAC Industrie, Papeterie du Doubs, GEMDOUBS, Minoterie Pont, Altadis-Seita, Papeterie de Mandeure, Incotex Textile, Electrolyse Abbaye d’Acey, VMC Pêche, Zindel, Galvanoplast, Roquette, CycloLab) and the various financial contributors to our projects (Agence de l’eau Rhône Méditerranée Corse, FEDER, Europe, INRA Transfert, Région Franche-Comté, Ville de Besançon, OSEO/ANVAR, Incubateur de Franche-Comté, Agence de l’Environnement et de la Maîtrise de l’Energie, Université de Franche-Comté).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégorio Crini.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crini, G. Cyclodextrin–epichlorohydrin polymers synthesis, characterization and applications to wastewater treatment: a review. Environ Chem Lett 19, 2383–2403 (2021). https://doi.org/10.1007/s10311-021-01204-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-021-01204-z

Keywords

Navigation