Skip to main content
Log in

Protein products of nonstop mRNA disrupt nucleolar homeostasis

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Stalled mRNA translation results in the production of incompletely synthesized proteins that are targeted for degradation by ribosome-associated quality control (RQC). Here we investigated the fate of defective proteins translated from stall-inducing, nonstop mRNA that escape ubiquitylation by the RQC protein LTN1. We found that nonstop protein products accumulated in nucleoli and this localization was driven by polylysine tracts produced by translation of the poly(A) tails of nonstop mRNA. Nucleolar sequestration increased the solubility of invading proteins but disrupted nucleoli, altering their dynamics, morphology, and resistance to stress in cell culture and intact flies. Our work elucidates how stalled translation may affect distal cellular processes and may inform studies on the pathology of diseases caused by failures in RQC and characterized by nucleolar stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguzzi A, O’Connor T (2010) Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 9:237–248

    Article  CAS  PubMed  Google Scholar 

  • Audas TE, Jacob MD, Lee S (2012) Immobilization of proteins in the nucleolus by ribosomal intergenic spacer noncoding RNA. Mol Cell 45:147–157

    Article  CAS  PubMed  Google Scholar 

  • Audas TE, Audas DE, Jacob MD, Ho JJD, Khacho M, Wang M, Perera JK, Gardiner C, Bennett CA, Head T, Kryvenko ON, Jorda M, Daunert S, Malhotra A, Trinkle-Mulcahy L, Gonzalgo ML, Lee S (2016) Adaptation to Stressors by Systemic Protein Amyloidogenesis. Dev Cell 39:155–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bengtson MH, Joazeiro CAP (2010a) Role of a ribosome-associated E3 ubiquitin ligase in protein quality control. Nature 467:470–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bengtson MH, Joazeiro CAP (2010b) Role of a ribosome-associated E3 ubiquitin ligase in protein quality control. Nature 467:470–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bock AS, Günther S, Mohr J, Goldberg LV, Jahic A, Klisch C, Hübner CA, Biskup S, Beetz C (2018) A nonstop variant in REEP1 causes peripheral neuropathy by unmasking a 3′ UTR-encoded, aggregation-inducing motif. Hum Mutat 39:193–196

    Article  CAS  PubMed  Google Scholar 

  • Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI (2010) The nucleolus under stress. Mol Cell 40:216–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandman O, Stewart-Ornstein J, Wong D, Larson A, Williams CC, Li GW, Zhou S, King D, Shen PS, Weibezahn J, Dunn JG, Rouskin S, Inada T, Frost A, Weissman JS (2012a) A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell 151:1042–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandman O, Stewart-Ornstein J, Wong D, Larson A, Williams CC, Li GW, Zhou S, King D, Shen PS, Weibezahn J, Dunn JG, Rouskin S, Inada T, Frost A, Weissman JS (2012b) A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell 151:1042–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brangwynne CP, Mitchison TJ, Hyman AA (2011) Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc Natl Acad Sci U S A 108:4334–4339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Huang S (2001) Nucleolar components involved in ribosome biogenesis cycle between the nucleolus and nucleoplasm in interphase cells. J Cell Biol 153:169–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choe Y-J, Park S-H, Hassemer T, Körner R, Vincenz-Donnelly L, Hayer-Hartl M, Hartl FU (2016) Failure of RQC machinery causes protein aggregation and proteotoxic stress. Nature 531:191–195

    Article  CAS  PubMed  Google Scholar 

  • Chu J, Hong NA, Masuda CA, Jenkins BV, Nelms KA, Goodnow CC, Glynne RJ, Wu H, Masliah E, Joazeiro CAP, Kay SA (2009) A mouse forward genetics screen identifies LISTERIN as an E3 ubiquitin ligase involved in neurodegeneration. Proc Natl Acad Sci U S A 106:2097–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis ZH, Mediani L, Vinet J et al (2019) Protein products of non-stop mRNA disrupt nucleolar homeostasis. Preprint at. https://doi.org/10.1101/851741

  • Defenouillère Q, Yao Y, Mouaikel J et al (2013a) Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products. Proc Natl Acad Sci U S A 110:5046–5051

    Article  PubMed  PubMed Central  Google Scholar 

  • Defenouillère Q, Yao Y, Mouaikel J et al (2013b) Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products. Proc Natl Acad Sci U S A 110:5046–5051

    Article  PubMed  PubMed Central  Google Scholar 

  • Defenouillère Q, Zhang E, Namane A, Mouaikel J, Jacquier A, Fromont-Racine M (2016) Rqc1 and Ltn1 Prevent C-terminal Alanine-Threonine Tail (CAT-tail)-induced Protein Aggregation by Efficient Recruitment of Cdc48 on Stalled 60S Subunits. J Biol Chem 291:12245–12253

    Article  PubMed  PubMed Central  Google Scholar 

  • Derenzini M, Trerè D, Pession A, Montanaro L, Sirri V, Ochs RL (1998) Nucleolar function and size in cancer cells. Am J Pathol 152:1291–1297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doma MK, Parker R (2006) Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 440:561–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn JG, Foo CK, Belletier NG, Gavis ER, Weissman JS (2013) Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster. Elife 2:e01179

    Article  PubMed  PubMed Central  Google Scholar 

  • Edelstein A, Amodaj N, Hoover K et al (2010) Computer control of microscopes using μManager. Curr Protoc Mol Biol Chapter 14(Unit14):20

    Google Scholar 

  • Edelstein AD, Tsuchida MA, Amodaj N et al (2014) Advanced methods of microscope control using μManager software. J Biol Methods 1. https://doi.org/10.14440/jbm.2014.36

  • Feric M, Vaidya N, Harmon TS, Mitrea DM, Zhu L, Richardson TM, Kriwacki RW, Pappu RV, Brangwynne CP (2016) Coexisting Liquid Phases Underlie Nucleolar Subcompartments. Cell 165:1686–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frischmeyer PA, van Hoof A, O’Donnell K et al (2002a) An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295:2258–2261

    Article  CAS  PubMed  Google Scholar 

  • Frischmeyer PA, van Hoof A, O’Donnell K et al (2002b) An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295:2258–2261

    Article  CAS  PubMed  Google Scholar 

  • Frottin F, Schueder F, Tiwary S, Gupta R, Körner R, Schlichthaerle T, Cox J, Jungmann R, Hartl FU, Hipp MS (2019) The nucleolus functions as a phase-separated protein quality control compartment. Science 365:342–347

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S', Wilkins MR, Appel RD, Bairoch A (2005) Protein Identification and Analysis Tools on the ExPASy Server. In: Walker JM (ed) The Proteomics Protocols Handbook. Humana Press, Totowa, NJ, pp 571–607

    Chapter  Google Scholar 

  • Graber JH, Cantor CR, Mohr SC, Smith TF (1999) In silico detection of control signals: mRNA 3’-end-processing sequences in diverse species. Proc Natl Acad Sci U S A 96:14055–14060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greig JA, Nguyen TA, Lee M, et al (2019) Arginine-enriched mixed-charge domains provide cohesion for nuclear speckle condensation. bioRxiv 771592

  • Guo L, Kim HJ, Wang H et al (2018) Nuclear-Import Receptors Reverse Aberrant Phase Transitions of RNA-Binding Proteins with Prion-like Domains. Cell 173:677–692.e20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández-Ortega K, Garcia-Esparcia P, Gil L, Lucas JJ, Ferrer I (2016) Altered machinery of protein synthesis in Alzheimer’s: from the nucleolus to the ribosome. Brain Pathol 26:593–605

    Article  PubMed  Google Scholar 

  • Ishimura R, Nagy G, Dotu I, Zhou H, Yang XL, Schimmel P, Senju S, Nishimura Y, Chuang JH, Ackerman SL (2014) RNA function. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration. Science 345:455–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito-Harashima S, Kuroha K, Tatematsu T (2007a) Translation of the poly (A) tail plays crucial roles in nonstop mRNA surveillance via translation repression and protein destabilization by proteasome in yeast. Genes, Translation of the poly(A) tail plays crucial roles in nonstop mRNA surveillance via translation repression and protein destabilization by proteasome in yeast

  • Ito-Harashima S, Kuroha K, Tatematsu T, Inada T (2007b) Translation of the poly (A) tail plays crucial roles in nonstop mRNA surveillance via translation repression and protein destabilization by proteasome in yeast. Genes Dev 21:519–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joazeiro CAP (2017) Ribosomal Stalling During Translation: Providing Substrates for Ribosome-Associated Protein Quality Control. Annu Rev Cell Dev Biol 33:343–368

    Article  CAS  PubMed  Google Scholar 

  • Juszkiewicz S, Hegde RS (2017) Initiation of Quality Control during Poly(A) Translation Requires Site-Specific Ribosome Ubiquitination. Mol Cell 65:743–750.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitamura A, Nakayama Y, Shibasaki A, Taki A, Yuno S, Takeda K, Yahara M, Tanabe N, Kinjo M (2016) Interaction of RNA with a C-terminal fragment of the amyotrophic lateral sclerosis-associated TDP43 reduces cytotoxicity. Sci Rep 6:19230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klauer AA, van Hoof A (2012) Degradation of mRNAs that lack a stop codon: a decade of nonstop progress. WIREs RNA 3:649–660

    Article  CAS  PubMed  Google Scholar 

  • Koulouras G, Panagopoulos A, Rapsomaniki MA, Giakoumakis NN, Taraviras S, Lygerou Z (2018) EasyFRAP-web: a web-based tool for the analysis of fluorescence recovery after photobleaching data. Nucleic Acids Res 46:W467–W472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  PubMed  Google Scholar 

  • Lam YW, Trinkle-Mulcahy L (2015) New insights into nucleolar structure and function. F1000Prime Rep 7:48

  • Lang W-H, Calloni G, Vabulas RM (2018) Polylysine is a Proteostasis Network-Engaging Structural Determinant. J Proteome Res 17:1967–1977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee K-H, Zhang P, Kim HJ et al (2016) C9orf72 Dipeptide Repeats Impair the Assembly, Dynamics, and Function of Membrane-Less Organelles. Cell 167:774–788.e17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linkert M, Rueden CT, Allan C, Burel JM, Moore W, Patterson A, Loranger B, Moore J, Neves C, MacDonald D, Tarkowska A, Sticco C, Hill E, Rossner M, Eliceiri KW, Swedlow JR (2010) Metadata matters: access to image data in the real world. J Cell Biol 189:777–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin PB, Kigoshi-Tansho Y, Sher RB, Ravenscroft G, Stauffer JE, Kumar R, Yonashiro R, Müller T, Griffith C, Allen W, Pehlivan D, Harel T, Zenker M, Howting D, Schanze D, Faqeih EA, Almontashiri NAM, Maroofian R, Houlden H, Mazaheri N, Galehdari H, Douglas G, Posey JE, Ryan M, Lupski JR, Laing NG, Joazeiro CAP, Cox GA (2020) NEMF mutations that impair ribosome-associated quality control are associated with neuromuscular disease. Nat Commun 11:4625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mediani L, Guillén-Boixet J, Vinet J et al (2019) Defective ribosomal products challenge nuclear function by impairing nuclear condensate dynamics and immobilizing ubiquitin. EMBO J 38:e101341

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitrea DM, Cika JA, Guy CS, Ban D, Banerjee PR, Stanley CB, Nourse A, Deniz AA, Kriwacki RW (2016) Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. Elife 5. https://doi.org/10.7554/eLife.13571

  • Nakamura Y, Gojobori T, Ikemura T (2000) Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res 28:292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parlato R, Kreiner G (2013) Nucleolar activity in neurodegenerative diseases: a missing piece of the puzzle? J Mol Med 91:541–547

    Article  CAS  PubMed  Google Scholar 

  • Rebelo AP, Abrams AJ, Cottenie E, Horga A, Gonzalez M, Bis DM, Sanchez-Mejias A, Pinto M, Buglo E, Markel K, Prince J, Laura M, Houlden H, Blake J, Woodward C, Sweeney MG, Holton JL, Hanna M, Dallman JE, Auer-Grumbach M, Reilly MM, Zuchner S (2016) Cryptic Amyloidogenic Elements in the 3′ UTRs of Neurofilament Genes Trigger Axonal Neuropathy. Am J Hum Genet 98:597–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10(Suppl):S10–S17

    Article  PubMed  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  • Scott MS, Boisvert F-M, McDowall MD et al (2010) Characterization and prediction of protein nucleolar localization sequences. Nucleic Acids Res 38:7388–7399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao S, von der Malsburg K, Hegde RS (2013) Listerin-dependent nascent protein ubiquitination relies on ribosome subunit dissociation. Mol Cell 50:637–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundaramoorthy E, Leonard M, Mak R et al (2017) ZNF598 and RACK1 Regulate Mammalian Ribosome-Associated Quality Control Function by Mediating Regulatory 40S Ribosomal Ubiquitylation. Mol Cell 65:751–760.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian B, Pan Z, Lee JY (2007) Widespread mRNA polyadenylation events in introns indicate dynamic interplay between polyadenylation and splicing. Genome Res 17:156–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • To T-L, Piggott BJ, Makhijani K et al (2015) Rationally designed fluorogenic protease reporter visualizes spatiotemporal dynamics of apoptosis in vivo. Proc Natl Acad Sci U S A 112:3338–3343

    Article  PubMed  PubMed Central  Google Scholar 

  • van Hoof A, Frischmeyer PA, Dietz HC, Parker R (2002) Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295:2262–2264

    Article  PubMed  Google Scholar 

  • Verma R, Oania RS, Kolawa NJ, Deshaies RJ (2013) Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome. Elife 2:e00308

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang M, Tao X, Jacob MD et al (2018) Stress-Induced Low Complexity RNA Activates Physiological Amyloidogenesis. Cell Rep 24:1713–1721.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yonashiro R, Tahara EB, Bengtson MH, Khokhrina M, Lorenz H, Chen KC, Kigoshi-Tansho Y, Savas JN, Yates JR III, Kay SA, Craig EA, Mogk A, Bukau B, Joazeiro CAP (2016) The Rqc2/Tae2 subunit of the ribosome-associated quality control (RQC) complex marks ribosome-stalled nascent polypeptide chains for aggregation. Elife 5:e11794

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Dang Y, Zhou M, Yuan H, Liu Y (2018) Codon usage biases co-evolve with transcription termination machinery to suppress premature cleavage and polyadenylation. Elife 7. https://doi.org/10.7554/eLife.33569

Download references

Acknowledgments

We thank the members of the Brandman laboratory for helpful discussions and commentary on the manuscript. Additionally, we acknowledge the members of the Julie Theriot Lab (Stanford/University of Washington) and Aaron Straight (Stanford) labs for use of microscopes, reagents, and expertise. We also thank people from the CIGS microscopy facility (University of Modena and Reggio Emilia) for technical support. This work was performed while ASH was a postdoctoral fellow in the laboratory of Dr. Rohit V. Pappu (RVP) at Washington University in St. Louis and supported by the Human Frontiers Science Program (grant RGP0034/2017 to RVP and S.A.). S.A. was supported by the European Researchn Council (PhaseAge, No. 725836). S.C. acknowledges funding from AriSLA Foundation (MLOpathy); Cariplo Foundation (Rif. 2014-0703); MAECI (Dissolve_ALS); MIUR (Departments of excellence 2018-2022; E91I18001480001). S.C. and S.A. are grateful to EU Joint Programme - Neurodegenerative Disease Research (JPND) project. The project is supported through funding organizations under the aegis of JPND (http://www.neurodegenerationresearch.eu/). This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement no. 643417. A preprint of this work was uploaded to BioRxiv (Davis et al., 2019)

Funding

This research was supported by a Stanford Dean’s Postdoctoral Fellowship to ZHD as well as a grant (R01GM115968) from the National Institutes of Health to OB. Work in BL’s lab was supported by grants (R01NS084412, R01NS083417 and R01AR0748750) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Serena Carra or Onn Brandman.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 11755 kb)

ESM 2

(DOCX 8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, Z.H., Mediani, L., Antoniani, F. et al. Protein products of nonstop mRNA disrupt nucleolar homeostasis. Cell Stress and Chaperones 26, 549–561 (2021). https://doi.org/10.1007/s12192-021-01200-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-021-01200-w

Keywords

Navigation