Skip to main content

Advertisement

Log in

Catalogue of events with cumulative fluxes below as well as comparable and exceeding those for RBSP discovered third radiation belt

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The formation of a temporary third radiation belt in the slot region of Earth’s magnetosphere was reported (Baker et al. in Science 340:186-190, 2013a) from the early data of the radiation belt storm probes (RBSP) mission. The cumulative flux of relativistic electrons in L = 3-3.5 for the third radiation belt of that study is calculated here and defined as threshold flux (TF) (105 cm−2 s−1 sr−1 MeV−1). A catalogue of 133 events during Sep 2012 – Feb 2019 is presented. Events are distributed into, below threshold flux (BTF), of the order of, one hundred and one thousand times the threshold flux, (OTF), (HTF), and (TTF) categories respectively. Finding high 2 MeV flux threshold at L = 3-3.5 is a way to find ideal condition for the possible formation of a third radiation belt, aware that attaining TF does not necessarily mean formation of the third radiation belt. It is found that BTF occurred 29 times and 105 times cumulative flux exceeded TF but TTF occurred very rarely. The effects of large scale solar wind structures (LSSS) and number of main phase Dst dips on BTF-TTF events are also studied. The findings of this study may be helpful for understanding the third radiation belt formation in the slot region of Earth’s magnetosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abel, B., Thorne, R.M.: Electron scattering loss in Earth’s inner magnetosphere: 1. Dominant physical processes. J. Geophys. Res. 103, 2385–2396 (1998). https://doi.org/10.1029/97JA02919

    Article  ADS  Google Scholar 

  • Baker, D.N., et al.: A long-lived relativistic electron storage ring embedded in Earth’s outer Van Allen belt. Science 340, 186–190 (2013a)

    Article  ADS  Google Scholar 

  • Baker, D.N., Kanekal, S.G., Hoxie, V.C., Batiste, S., Bolton, M., Li, X., et al.: The Relativistic Electron-Proton Telescope (REPT) instrument on board the Radiation Belt Storm Probes (RBSP) spacecraft: characterization of Earth’s radiation belt high-energy particle populations. Space Sci. Rev. 179(1–4), 337–381 (2013b). https://doi.org/10.1007/s11214-012-9950-9

    Article  ADS  Google Scholar 

  • Baker, D.N., et al.: Space weather effects in the Earth’s radiation belts. Space Sci. Rev. 214, 1–7 (2018)

    Article  ADS  Google Scholar 

  • Baker, D.N., et al.: Multiyear measurements of radiation belt electrons: acceleration, transport, and loss. J. Geophys. Res. Space Phys. 124, 2588–2602 (2019)

    Article  ADS  Google Scholar 

  • Boyd, A.J., et al.: What causes radiation belt enhancements: a survey of the van Allen Probes era. Geophys. Res. Lett. 45, 5253–5259 (2018)

    Article  ADS  Google Scholar 

  • Daglis, I.A., Katsavrias, C., Georgiou, M.: From solar sneezing to killer electrons: outer radiation belt response to solar eruptions. Philos. Trans. R. Soc. A 377, 20180097 (2019)

    Article  ADS  Google Scholar 

  • Fennell, J.F., Claudepierre, S.G., O’Brien, T.P., Blake, J.B., Clemmons, J.H., Spence, H.E., Reeves, G.D.: Van Allen Probes show the inner radiation zone contains no MeV electrons: ECT/MagEIS data. Geophys. Res. Lett. 42, 1283–1289 (2015). https://doi.org/10.1002/2014GL062874

    Article  ADS  Google Scholar 

  • Foster, J.C., et al.: Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear interactions with VLF chorus. J. Geophys. Res. Space Phys. 122, 324–339 (2017)

    Article  ADS  Google Scholar 

  • Friedel, R.H.W., Reeves, G.D., Obara, T.: Relativistic electron dynamics in the inner magnetosphere—a review. J. Atmos. Sol.-Terr. Phys. 64, 265–282 (2002)

    Article  ADS  Google Scholar 

  • Georgiou, M., et al.: Ultralow frequency waves as an intermediary for solar wind energy input into the radiation belts. J. Geophys. Res. Space Phys. 123, 10,090–10,108 (2018)

    Article  Google Scholar 

  • Katsavrias, C., Daglis, I.A., Li, W.: On the statistics of acceleration and loss of relativistic electrons in the outer radiation belt: a superposed epoch analysis. J. Geophys. Res. Space Phys. 124, 2755–2768 (2019a)

    Article  ADS  Google Scholar 

  • Katsavrias, C., et al.: Highly relativistic electron flux enhancement during the weak geomagnetic storm of April–May 2017. J. Geophys. Res. Space Phys. 124, 4402–4413 (2019b)

    Article  ADS  Google Scholar 

  • Li, W., Hudson, M.K.: Earth’s Van Allen Radiation Belts: from discovery to the Van Allen Probes era. J. Geophys. Res. Space Phys. 124, 8319–8351 (2019)

    Article  ADS  Google Scholar 

  • Li, W., et al.: Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: observations and simulations. J. Geophys. Res. Space Phys. 121, 5520–5536 (2016)

    Article  ADS  Google Scholar 

  • Lyons, L.R., Thorne, R.M.: Equilibrium structure of radiation belt electrons. J. Geophys. Res. 78(13), 2142–2149 (1973). https://doi.org/10.1029/JA078i013p02142

    Article  ADS  Google Scholar 

  • Ma, Q., et al.: Quantitative evaluation of radial diffusion and local acceleration processes during GEM challenge events. J. Geophys. Res. Space Phys. 123, 1938–1952 (2018)

    Article  ADS  Google Scholar 

  • Mann, I.R., et al.: Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt. Nat. Phys. 12, 978–983 (2016)

    Article  Google Scholar 

  • Mann, I.R., et al.: Reply to the dynamics of Van Allen belts revisited. Nat. Phys. 14, 103–104 (2018)

    Article  Google Scholar 

  • Mathie, R.A., Mann, I.R.: A correlation between extended intervals of ULF wave power and storm-time geosynchronous relativistic electron flux enhancements. Geophys. Res. Lett. 27(20), 3261–3264 (2000)

    Article  ADS  Google Scholar 

  • Mauk, B.H., Fox, N.J., Kanekal, S.G., Kessel, R.L., Sibeck, D.G., Ukhorskiy, A.: Science objectives and rationale for the Radiation Belt Storm Probes mission. Space Sci. Rev. 179(1–4), 3–27 (2013). https://doi.org/10.1007/s11214-012-9908-y

    Article  ADS  Google Scholar 

  • Menk, F.W.: Magnetospheric ULF waves: a review. In: The Dynamic Magnetosphere, pp. 223–256. Springer, Dordrecht (2011)

    Chapter  Google Scholar 

  • Ozeke, L.G., et al.: The March 2015 superstorm revisited: phase space density profiles and fast ULF wave diffusive transport. J. Geophys. Res. Space Phys. 124, 1143–1156 (2019).

    Article  ADS  Google Scholar 

  • Ozeke, L.G., et al.: Rapid outer radiation belt flux dropouts and fast acceleration during the March 2015 and 2013 storms: the role of ultra-low frequency wave transport from a dynamic outer boundary. J. Geophys. Res. Space Phys. 125, e2019JA027179 (2020)

    Article  ADS  Google Scholar 

  • Reeves, G.D., et al.: Electron acceleration in the heart of the Van Allen radiation belts. Science 341, 991–994 (2013)

    Article  ADS  Google Scholar 

  • Ripoll, J.-F., Reeves, G.D., Cunningham, G.S., Loridan, V., Denton, M., Santolík, O., et al.: Reproducing the observed energy-dependent structure of Earth’s electron radiation belts during storm recovery with an event-specific diffusion model. Geophys. Res. Lett. 43, 5616–5625 (2016). https://doi.org/10.1002/2016GL068869

    Article  ADS  Google Scholar 

  • Ripoll, J.-F., Claudepierre, S.G., Ukhorskiy, A.Y., Colpitts, C., Li, X., Fennell, J., Crabtree, C.: Particle dynamics in the Earth’s radiation belts: review of current research and open questions. J. Geophys. Res. Space Phys. 125, e2019JA026735 (2020). https://doi.org/10.1029/2019JA026735

    Article  ADS  Google Scholar 

  • Shah, A.: the interaction of storm-time ULF waves with Earth’s radiation belts in the presence of a realistic ionosphere boundary. Doctoral dissertation. Ph.D. thesis, University of Newcastle, Australia (2017)

  • Shah, A., Waters, C.L., Sciffer, M.D., Menk, F.W., Lysak, R.L.: Effect of the ionosphere on the interaction between ULF waves and radiation belt electrons. J. Geophys. Res. Space Phys. 120(10), 8572–8585 (2015)

    Article  ADS  Google Scholar 

  • Shah, A., Waters, C.L., Sciffer, M.D., Menk, F.W.: Energization of outer radiation belt electrons during storm recovery phase. J. Geophys. Res. Space Phys. 121(11), 10–845 (2016)

    Article  Google Scholar 

  • Shah, A., ur Rehman, S., ul Haque, Q.: Plasma waves and particles during multi-dip storms invoked by turbulent solar wind. Astrophys. J. 869(2), 144 (2018)

    Article  ADS  Google Scholar 

  • Shi, R., et al.: Highly oblique lower-band chorus statistics: dependencies of wave power on refractive index and geomagnetic activity. J. Geophys. Res. Space Phys. 123, 4767–4784 (2018)

    Article  ADS  Google Scholar 

  • Shprits, Y.Y., et al.: Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts. Nat. Commun. 7, 1–7 (2016)

    Article  Google Scholar 

  • Shprits, Y.Y., Horne, R.B., Kellerman, A.C., Drozdov, A.Y.: The dynamics of Van Allen belts revisited. Nat. Phys. 14, 102–103 (2018)

    Article  Google Scholar 

  • Su, Z., et al.: Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons. Nat. Commun. 6, 1–8 (2015)

    ADS  Google Scholar 

  • Summers, D., Mann, I.R., Baker, D.N., Schulz, M.G. (eds.): Dynamics of the Earth’s Radiation Belts and Inner Magnetosphere, vol. 199. Wiley, New York (2013)

    Google Scholar 

  • Thorne, R.M., et al.: Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus. Nature 504, 411–414 (2013)

    Article  ADS  Google Scholar 

  • Turner, D.L., Kilpua, E.K.J., Hietala, H., Claudepierre, S.G., O’Brien, T.P., Fennell, J.F., Blake, J.B., Jaynes, A.N., Kanekal, S., Baker, D.N., Spence, H.E., Ripoll, J.-F., Reeves, G.D.: The response of Earth’s electron radiation belts to geomagnetic storms: statistics from the Van Allen Probes era including effects from different storm drivers. J. Geophys. Res. Space Phys. 124(2), 1013–1034 (2019)

    Article  ADS  Google Scholar 

  • Van Allen, J.A.: Radiation belts around the Earth. Sci. Am. 200, 39–47 (1959)

    Article  Google Scholar 

  • Van Allen, J.A., Frank, L.A.: Radiation around the Earth to a radial distance of 107,400 km. Nature 183, 430–434 (1959)

    Article  ADS  Google Scholar 

  • Zhang, J., Richardson, I.G., Webb, D.F.: Interplanetary origin of multiple-dip geomagnetic storms. J. Geophys. Res. Space Phys. 113(A3), A00A12 (2008)

    ADS  Google Scholar 

Download references

Acknowledgements

We are thankful to J.H. King, N. Papitashvili (for solar wind data), and D. Baker and M. G. Henderson (for REPT data) and NASA cdaweb. We thank the REPT team, and electrons flux data are available on the Van Allen Probes repository website (https://www.rbsp-ect.lanl.gov/science/DataDirectories.php). The used data is available upon request at masifkf@gmail.com. We thank the reviewers for their excellent and sincere guidance throughout the review.

Author information

Authors and Affiliations

Authors

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, A., Ul Haque, Q., Ur Rehman, S. et al. Catalogue of events with cumulative fluxes below as well as comparable and exceeding those for RBSP discovered third radiation belt. Astrophys Space Sci 366, 22 (2021). https://doi.org/10.1007/s10509-021-03928-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-021-03928-4

Keywords

Navigation