Skip to main content
Log in

Adaptive two- and three-dimensional multiresolution computations of resistive magnetohydrodynamics

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Fully adaptive computations of the resistive magnetohydrodynamic (MHD) equations are presented in two and three space dimensions using a finite volume discretization on locally refined dyadic grids. Divergence cleaning is used to control the incompressibility constraint of the magnetic field. For automatic grid adaptation a cell-averaged multiresolution analysis is applied which guarantees the precision of the adaptive computations, while reducing CPU time and memory requirements. Implementation issues of the open source code CARMEN-MHD are discussed. To illustrate its precision and efficiency different benchmark computations including shock-cloud interaction and magnetic reconnection are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1989)

    Article  MATH  Google Scholar 

  2. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53(3), 484–512 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bihari, B.L., Harten, A.: Multiresolution schemes for the numerical solution of 2-D conservation laws i. SIAM J. Sci. Comput. 18(2), 315–354 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chiavassa, G., Donat, R.: Point value multiscale algorithms for 2D compressible flows. SIAM J. Sci. Comput. 23(3), 805–823 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cohen, A.: Numerical Analysis of Wavelet Methods. Elsevier, Paris (2003)

    MATH  Google Scholar 

  6. Cohen, A., Dyn, N., Hecht, F., Mirebeau, J.: Adaptive multiresolution analysis based on anisotropic triangulations. Math. Comput. 81(278), 789–810 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, A., Dyn, N., Kaber, S., Postel, M.: Multiresolution schemes on triangles for scalar conservation laws. J. Comput. Phys. 161, 264–286 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cohen, A., Kaber, S.M., Müller, S., Postel, M.: Fully adaptive multiresolution finite volume schemes for conservation laws. Math. Comput. 72(241), 183–225 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dai, W., Woodward, P.R.: A simple finite difference scheme for multidimensional magnetohydrodynamical equations. J. Comput. Phys. 142(2), 331–369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dedner, A., Kemm, F., Kröner, D., Munz, C.D., Schnitzer, T., Wesenberg, M.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175, 645–673 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deiterding, R., Domingues, M.O., Gomes, S.M., Roussel, O., Schneider, K.: Adaptive multiresolution or adaptive mesh refinement: A case study for 2D Euler equations. ESAIM Proceedings 29, 28–42 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deiterding, R., Domingues, M.O., Gomes, S.M., Schneider, K.: Comparison of adaptive multiresolution and adaptive mesh refinement applied to simulations of the compressible Euler equations. SIAM J. Sci. Comput. 38(5), S173–S193 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Domingues, M.O., Deiterding, R., Lopes, M.M., Gomes, A.K.F., Mendes, O., Schneider, K.: Wavelet-based parallel dynamic mesh adaptation for magnetohydrodynamics in the AMROC framework. Comput Fluids 190, 374–381 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Domingues, M.O., Gomes, A.K.F., Gomes, S., Mendes, O., Di Pierro, B., Schneider, K.: Extended generalized lagrangian multipliers for magnetohydrodynamics using adaptive multiresolution methods. ESAIM Proc. 43, 95–107 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Domingues, M.O., Gomes, S.M., Roussel, O., Schneider, K.: Adaptive multiresolution methods. ESAIM Proc. 34, 1–96 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fambri, F., Dumbser, M., Zanotti, O.: Space–time adaptive ADER-DG schemes for dissipative flows: Compressible navier–Stokes and resistive MHDx equations. Comput. Phys. Commun. 220, 297–318 (2017)

    Article  MathSciNet  Google Scholar 

  17. Feng, X.: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere. Springer, Berlin (2020)

    Book  Google Scholar 

  18. Fryxell, B., Olson, K., Ricker, P., Timmes, F.X., Zingale, M., Lamb, D.Q., MacNeice, P., Rosner, R., Truran, J.W., Tufo, H.: FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys. J. Suppl. Ser. 131, 273–334 (2000)

    Article  Google Scholar 

  19. Goedbloed, J.P., Poedts, S.: Principles of Magnetohydrodynamics. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  20. Gomes, A.K.F.: Análise multirresolução adaptativa no contexto da resolução numérica de um modelo de magnetohidrodinâmica ideal. Master’s thesis, Instituto Nacional de Pesquisas Espaciais (INPE) São José dos Campos (2012)

  21. Gomes, A.K.F.: Simulação Numérica De Um Modelo Magneto-Hidrodinâmico Multidimensional No Contexto Da Multirresoluç áo Adaptativa Por MáDias Celulares. Ph.D. Thesis. Instituto Nacional de Pesquisas Espaciais, São José dos Campos (2018)

    Google Scholar 

  22. Gomes, A.K.F., Domingues, M.O., Mendes, O.: Ideal and resistive magnetohydrodynamic two-dimensional simulation of the Kelvin-Helmholtz instability in the context of adaptive multiresolution analysis. TEMA (Sã,o Carlos) 18(2), 317–333 (2017)

    Article  MathSciNet  Google Scholar 

  23. Gomes, A.K.F., Domingues, M.O., Mendes, O., Schneider, K.: On the verification of adaptive three-dimensional multiresolution computations of the magnetohydrodynamic equations. J Appl Nonlinear Dyn 7, 231–242 (2018)

    Article  MathSciNet  Google Scholar 

  24. Gomes, A.K.F., Domingues, M.O., Schneider, K., Mendes, O., Deiterding, R.: An adaptive multiresolution method for ideal magnetohydrodynamics using divergence cleaning with parabolic–hyperbolic correction. Appl. Numer. Math. 95, 199–213 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Groen, D., Zasada, S.J., Coveney, P.V.: Survey of multiscale and multiphysics applications and communities. Comput Sci Eng 16(2), 34–43 (2014)

    Article  Google Scholar 

  26. Harten, A.: Discrete multi-resolution analysis and generalized wavelets. Appl. Numer. Math. 12(1), 153–192 (1993)

    MathSciNet  MATH  Google Scholar 

  27. Harten, A.: Adaptive multiresolution schemes for shock computations. J. Comput. Phys. 115(2), 319–338 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Commun. Pure Appl. Math. 48(12), 1305–1342 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Harten, A.: Multiresolution representation of data: a general framework. SIAM J Numer Anal 33(3), 385–394 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hopkins, P.F., Raives, M.J.: Accurate, meshless methods for magnetohydrodynamics. Mon. Not. R. Astron. Soc. 455(1), 51–88 (2016)

    Article  Google Scholar 

  31. Jardin, S.C.: Review of implicit methods for the magnetohydrodynamic description of magnetically confined plasmas. J. Comput. Phys. 231(3), 822–838 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jiang, G.S., Wu, C.C.: A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys. 150(2), 561–594 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jiang, R.L., Fang, C., Chen, P.F.: A new MHD code with adaptive mesh refinement and parallelization for astrophysics. Comput. Phys. Commun. 183(8), 1617–1633 (2012)

    Article  MATH  Google Scholar 

  34. Kaibara, M.K., Gomes, S.M.: A fully adaptive multiresolution scheme for shock computations. In: Godunov methods: theory and applications, pp 497–503. Springer US, Boston (2001)

  35. Kleimann, J., Kopp, A., Fichtner, H., Grauer, R., Germaschewski, K.: Three-dimensional mhd high-resolution computations with CWENO employing adaptive mesh refinement. Comput. Phys. Commun. 158(1), 47–56 (2004)

    Article  MATH  Google Scholar 

  36. Kolomenskiy, D., Onishi, R., Uehara, H.: Data compression for environmental flow simulations. arXiv:1810.04822 (2018)

  37. Koskinen, H.E.J., Baker, D.N., Balogh, A., Gombosi, T., Veronig, A., von Steiger, R.: Achievements and challenges in the science of space weather. Space Sci. Rev. 212, 1137–1157 (2017)

    Article  Google Scholar 

  38. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  39. Londrillo, P., Del Zanna, L.: High-order upwind schemes for multidimensional magnetohydrodynamics. Astrophys. J. 530(1), 508 (2000)

    Article  Google Scholar 

  40. Lopes, M.M., Deiterding, R., Gomes, A.K.F., Mendes, O., Domingues, M.O.: An ideal compressible magnetohydrodynamic solver with parallel block-structured adaptive mesh refinement. Comput Fluids 173, 293–298 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mignone, A., Tzeferacos, P.: A second-order unsplit Godunov scheme for cell-centered MHD: The CTU-GLM scheme. J. Comput. Phys. 229(6), 2117–2138 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Miyoshi, T., Kusano, K.: A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics. J. Comput. Phys. 208, 315–344 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Morley, S.K.: Challenges and opportunities in magnetospheric space weather prediction. Space Weather 18 e2018SW002108 (2019)

  44. Müller, S.: Adaptive Multiscale Schemes for Conservation Laws. In: Lectures Notes in Computational Science and Engineering, vol. 27. Springer, Heidelberg (2003)

  45. Orszag, S.A., Tang, C.M.: Small-scale structure of two-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 90(01), 129–143 (1979)

    Article  Google Scholar 

  46. Petschek, H.E.: Magnetic field annihilation. NASA Special Publication 50, 425 (1964)

    Google Scholar 

  47. Roussel, O.: Développement d’un algorithme multiresolution adaptatif tridimensionnel pour la résolution des équations aux dérivées partielles paraboliques. Ph.D. thesis, Université de la Méditerranée (2003)

  48. Roussel, O., Schneider, K., Tsigulin, A., Bockhorn, H.: A conservative fully adaptative multiresolution algorithm for parabolic PDEs. J. Comput. Phys. 188, 493–523 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ryu, D., Miniati, F., Jones, T., Frank, A.: A divergence-free upwind code for multidimensional magnetohydrodynamic flows. Astrophys. J. 509 (1), 244 (1998)

    Article  Google Scholar 

  50. Schneider, K., Vasilyev, O.V.: Wavelet methods in computational fluid dynamics. Annu. Rev. Fluid Mech. 42, 473–503 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Tóth, G., Van der Holst, B., Sokolov, I.V., De Zeeuw, D.L., Gombosi, T.I., Fang, F., Manchester, W.B., Meng, X., Najib, D., Powell, K.G., et al.: Adaptive numerical algorithms in space weather modeling. J. Comput. Phys. 231(3), 870–903 (2012)

    Article  MathSciNet  Google Scholar 

  52. Touma, R., Arminjon, P.: Central finite volume schemes with constrained transport divergence treatment for three-dimensional ideal MHD. J. Comput. Phys. 212(2), 617–636 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  53. Van der Holst, B., Keppens, R., Meliani, Z.: A multidimensional grid-adaptive relativistic magnetofluid code. Comput. Phys. Commun. 179(9), 617–627 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  54. Van Leer, B.: Towards the ultimate conservative difference scheme. ii. monotonicity and conservation combined in a second-order scheme. J Computat Phys 14(4), 361–370 (1974)

    Article  MATH  Google Scholar 

  55. Vanaverbeke, S., Keppens, R., Poedts, S.: GRADSPMHD: A parallel MHD code based on the sph formalism. Comput. Phys. Commun. 185(3), 1053–1073 (2014)

    Article  MATH  Google Scholar 

  56. Zanotti, O., Fambri, F., Dumbser, M., Hidalgo, A.: Space–time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting. Comput Fluids 118, 204–224 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  57. Ziegler, U.: The NIRVANA code: Parallel computational MHD with adaptive mesh refinement. Comput. Phys. Commun. 179(4), 227–244 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are indebted to Eng. V. E. Menconi for his invaluable computational assistance.

Funding

This work received financial support from the FAPESP (Grant: 2015/ 25624-2), CNPq (Grants: 302226/2018-4, 307083/2017-9, 306038/2015-3, 302226/2018-4), and FINEP (Grant: 0112052700) for financial support of this research. K.S. received partial support from the French Federation for Magnetic Fusion Studies (FR-FCM) and the Eurofusion consortium, funded by the Euratom research and training programme 2014–2018 and 2019–2020 under grant agreement no. 633053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Karina Fontes Gomes.

Ethics declarations

Disclaimer

The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Additional information

Communicated by: Silas Alben

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, A.K.F., Domingues, M.O., Mendes, O. et al. Adaptive two- and three-dimensional multiresolution computations of resistive magnetohydrodynamics. Adv Comput Math 47, 22 (2021). https://doi.org/10.1007/s10444-021-09845-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-021-09845-y

Keywords

Mathematics Subject Classification (2010)

Navigation