Skip to main content
Log in

Splitting of vibration mode in an imperfect submicron circular plate

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The dynamics of micro-/nanoscale plates are extremely sensitive to external conditions. Here, the vibration of a submicron-thick circular plate exposed to its ambient environment was investigated. The obtained results indicate that the vibration behavior of circular plates shows a strong dependence on the surrounding conditions. Mode pair splitting was observed in a vibration experiment. One crucial influence factor is the asymmetry due to exposure to an ambient environment. Therefore, numerical analyses were performed to identify the vibration of a circular plate due to symmetry breaking. A detailed finite element analysis revealed that symmetry breaking can lead not only to the splitting of some pairs of modes but also to shifts in natural frequencies. In addition, the relationships between the asymmetry and the frequency shift were identified together with the differences in the mode pairs for the circular plates. This study should be of great help for understanding the vibration of submicron plates and the design of submicron-scale resonators and biological sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lu, F., Lee, H., Lim, S.: Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications. Smart Mater. Struct. 13, 57 (2003). https://doi.org/10.1088/0964-1726/13/1/007

    Article  Google Scholar 

  2. Craighead, H.G.: Nanoelectromechanical systems. Science 290, 1532–1535 (2000). https://doi.org/10.1063/1.1927327

    Article  Google Scholar 

  3. Ekinci, K.: Electromechanical transducers at the nanoscale: Actuation and sensing of motion in nanoelectromechanical systems (NEMS). Small 1, 786–797 (2005). https://doi.org/10.1002/smll.200500077

    Article  Google Scholar 

  4. Rugar, D., Budakian, R., Mamin, H., et al.: Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004). https://doi.org/10.1038/nature02658

    Article  Google Scholar 

  5. Bunch, J.S., Van Der Zande, A.M., Verbridge, S.S., et al.: Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007). https://doi.org/10.1126/science.1136836

    Article  Google Scholar 

  6. Wang, Z.H., Lee, J., Feng, P.X.: Spatial mapping of multimode brownian motions in high-frequency silicon carbide microdisk resonators. Nat. Commun. 5, 5158 (2014). https://doi.org/10.1038/ncomms6158

    Article  Google Scholar 

  7. Rashvand, K., Rezazadeh, G., Madinei, H.: Effect of length-scale parameter on pull-in voltage and natural frequency of a micro-plate. Int. J. Eng. 27, 375–384 (2014). https://doi.org/10.5829/idosi.ije.2014.27.03c.04

    Article  Google Scholar 

  8. Naik, A.K., Hanay, M., Hiebert, W., et al.: Towards single-molecule nanomechanical mass spectrometry. Nat. Nanotechnol. 4, 445–450 (2009). https://doi.org/10.1038/nnano.2009.152

    Article  Google Scholar 

  9. Lee, J., Wang, Z., He, K., et al.: High frequency mos2 nanomechanical resonators. ACS Nano 7, 6086–6091 (2013). https://doi.org/10.1021/nn4018872

    Article  Google Scholar 

  10. Jomehzadeh, E., Noori, H., Saidi, A.: The size-dependent vibration analysis of micro-plates based on a modified couple stress theory. Phys. E. 43, 877–883 (2011). https://doi.org/10.1016/j.physe.2010.11.005

    Article  Google Scholar 

  11. Sumikura, H., Wang, T., Li, P., et al.: Highly confined and switchable mid-infrared surface phonon polariton resonances of planar circular cavities with a phase change material. Nano Lett. 19, 2549–2554 (2019). https://doi.org/10.1021/acs.nanolett.9b00304

    Article  Google Scholar 

  12. Zhang, L., Zheng, J., Wang, Y., et al.: Experimental studies of vibrational modes in a two-dimensional amorphous solid. Nat. Commun. 8, 67 (2017). https://doi.org/10.1038/s41467-017-00106-5

    Article  Google Scholar 

  13. Duan, K., Li, Y., Li, L., et al.: Diamond nanothread based resonators: Ultrahigh sensitivity and low dissipation. Nanoscale 10, 8058–8065 (2018). https://doi.org/10.1039/C8NR00502H

    Article  Google Scholar 

  14. Gupta, A., Akin, D., Bashir, R.: Single virus particle mass detection using microresonators with nanoscale thickness. Appl. Phys. Lett. 84, 1976–1978 (2004). https://doi.org/10.1063/1.1667011

    Article  Google Scholar 

  15. Chaste, J., Eichler, A., Moser, J., et al.: A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7, 301 (2012). https://doi.org/10.1038/nnano.2012.42

    Article  Google Scholar 

  16. Giannopoulos, G.I., Georgantzinos, S.K.: Establishing detection maps for carbon nanotube mass sensors: Molecular versus continuum mechanics. Acta Mech. 6, 2377–2390 (2017). https://doi.org/10.1007/s00707-017-1812-9

    Article  Google Scholar 

  17. Karabacak, D.M., Brongersma, S.H., Crego-Calama, M.: Enhanced sensitivity volatile detection with low power integrated micromechanical resonators. Lab Chip. 10, 1976–1982 (2010). https://doi.org/10.1039/b926170b

    Article  Google Scholar 

  18. Perkins, F.K., Friedman, A.L., Cobas, E., et al.: Chemical vapor sensing with monolayer MoS2. Nano Lett. 13, 668–673 (2013). https://doi.org/10.1021/nl3043079

    Article  Google Scholar 

  19. Tittl, A., Leitis, A., Liu, M., et al.: Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105–1109 (2018). https://doi.org/10.1126/science.aas9768

    Article  MathSciNet  MATH  Google Scholar 

  20. Chan, H., Bao, Y., Zou, J., et al.: Measurement of the casimir force between a gold sphere and a silicon surface with nanoscale trench arrays. Phys. Rev. Lett. 101, 030401 (2008). https://doi.org/10.1103/PhysRevLett.101.030401

    Article  Google Scholar 

  21. Yang, B., Lee, C., Kotlanka, R.K., et al.: A mems rotary comb mechanism for harvesting the kinetic energy of planar vibrations. J. Micromech. Microeng. 20, 065017 (2010). https://doi.org/10.1088/0960-1317/20/6/065017

    Article  Google Scholar 

  22. Ziegler, H., Tiesmeyer, J.: Digital sensor for IR radiation. Sens. Actuators 4, 363–367 (1983). https://doi.org/10.1016/0250-6874(83)85045-8

    Article  Google Scholar 

  23. Linden, J., Thyssen, A., Oesterschulze, E.: Suspended plate microresonators with high quality factor for the operation in liquids. Appl. Phys. Lett. 104, 191906 (2014). https://doi.org/10.1063/1.4875910

    Article  Google Scholar 

  24. Schlicke, H., Schröter, C.J., Vossmeyer, T.: Electrostatically driven drumhead resonators based on freestanding membranes of cross-linked gold nanoparticles. Nanoscale 8, 15880–15887 (2016). https://doi.org/10.1039/C6NR02654K

    Article  Google Scholar 

  25. Jia, H., Yang, R., Nguyen, A.E., et al.: Large-scale arrays of single-and few-layer mos2 nanomechanical resonators. Nanoscale 8, 10677–10685 (2016). https://doi.org/10.1039/c6nr01118g

    Article  Google Scholar 

  26. Lei, X.W., Natsuki, T., Shi, J.X., et al.: An atomic-resolution nanomechanical mass sensor based on circular monolayer graphene sheet: Theoretical analysis of vibrational properties. J. Appl. Phys. 113, 154313 (2013). https://doi.org/10.1063/1.4802438

    Article  Google Scholar 

  27. Luo, G., Zhang, Z.Z., Deng, G.W., et al.: Coupling graphene nanomechanical motion to a single-electron transistor. Nanoscale 9, 5608–5614 (2017). https://doi.org/10.1039/c6nr09768e

    Article  Google Scholar 

  28. Wang, L.F., Hu, H.Y.: Thermal vibration of a circular single-layered graphene sheet with simply supported or clamped boundary. J. Sound Vib. 349, 206–215 (2015). https://doi.org/10.1016/j.jsv.2015.03.045

    Article  Google Scholar 

  29. Wang, Z.H., Jia, H., Zheng, X.Q., et al.: Resolving and tuning mechanical anisotropy in black phosphorus via nanomechanical multimode resonance spectromicroscopy. Nano Lett. 16, 5394–5400 (2016). https://doi.org/10.1021/acs.nanolett.6b01598

    Article  Google Scholar 

  30. Lee, J., Wang, Z., He, K., et al.: Electrically tunable single-and few-layer mos2 nanoelectromechanical systems with broad dynamic range. Sci. Adv. 4, 6653 (2018). https://doi.org/10.1126/sciadv.aao6653

    Article  Google Scholar 

  31. Liu, R.M., Wang, L.F., Zhao, J.H.: Nonlinear vibrations of circular single-layer black phosphorus resonators. Appl. Phys. Lett. 113, 211901 (2018). https://doi.org/10.1063/1.5055950

    Article  Google Scholar 

  32. Miandoab, E.M., Pishkenari, H.N., Meghdari, A.: Effect of surface energy on nano-resonator dynamic behavior. Int. J. Mech. Sci. 119, 51–58 (2016). https://doi.org/10.1016/j.ijmecsci.2016.09.031

    Article  Google Scholar 

  33. Wang, Z.H., Lee, J., He, K., et al.: Embracing structural nonidealities and asymmetries in two-dimensional nanomechanical resonators. Sci. Rep. 4, 3919 (2014). https://doi.org/10.1038/srep03919

    Article  Google Scholar 

  34. Kumar, A., Krousgrill, C.M.: Mode-splitting and quasi-degeneracies in circular plate vibration problems: The example of free vibrations of the stator of a traveling wave ultrasonic motor. J. Sound Vib. 331, 5788–5802 (2012). https://doi.org/10.1016/j.jsv.2012.07.032s

    Article  Google Scholar 

  35. Yu, R.C., Mote, C.D., Jr.: Vibration and parametric excitation in asymmetric circular plates under moving loads. J. Sound Vib. 119, 409–427 (1987). https://doi.org/10.1016/0022-460X(87)90406-8

    Article  Google Scholar 

  36. Tai, G.A., Wang, K., Sun, Z., et al.: Nonlithographic fabrication of crystalline silicon nanodots on graphene. J. Phys. Chem. C. 116, 532–537 (2012). https://doi.org/10.1021/Jp210713q

    Article  Google Scholar 

  37. Timoshenko, S. P.: Woinowsky-Krieger S.: Theory of Plates and Shells. McGraw-hill, 1959

Download references

Acknowledgements

This work is supported in part by The National Science Fund for Distinguished Young Scholars under Grants No. 11925205, in part by the National Natural Science Foundation of China under Grants No. 51921003, in part by the Natural Science Foundation of Jiangsu Province under Grant No. BK20171411, and in part by the Fundamental Research Funds for the Central Universities of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, L., Tai, G. et al. Splitting of vibration mode in an imperfect submicron circular plate. Acta Mech 232, 1729–1739 (2021). https://doi.org/10.1007/s00707-020-02932-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02932-z

Navigation