Skip to main content
Log in

Contribution of Monovalent (Na+ and K+) and Divalent (Ca2+) Ions to the Mechanisms of Synaptic Plasticity

  • REVIEWS
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The review presents the mechanisms of participation of ions (Na+, K+, and Ca2+) in the processes of synaptic plasticity in the postsynaptic neuron during long-term potentiation and long-term depression. It is assumed that the main participants are AMPA and NMDA receptors, voltage-dependent Na+, K+, Ca2+ channels, Ca2+ and Na+-activated K+ channels, ATP-sensitive K+ channels, and Ca2+ channels of the endoplasmic reticulum. The review provides their molecular characteristics and discusses their role in long-term potentiation and long-term depression. The significance of changes in the intracellular ratio [Na+]i/[K+]i and Ca2+-dependent mechanism are considered for the first time from the signal formation to the level of gene expression. We believe that additional research is needed to identify a subset of neuronal genes whose differential expression contributes to synaptic plasticity, which is implemented with the participation of [Na+]i/[K+]i-sensitive Ca2+-independent “excitation–transcription coupling” mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bailey C.H., Kandel E.R., Harris K.M. 2015. Structural components of synaptic plasticity and memory consolidation. Cold Spring Harb. Perspect. Biol. 7 (7), 1–29.

    Article  Google Scholar 

  2. Kojima M., Klein R.L., Hatanaka H. 2002. Pre- and post-synaptic modification by neurotrophins. Neurosci. Res. 43 (3), 193–199.

    Article  CAS  PubMed  Google Scholar 

  3. Ghanbari A., Malyshev A., Volgushev M., Stevenson I.H. 2017. Estimating short-term synaptic plasticity from pre- and postsynaptic spiking. PLoS Comput. Biol. 13 (9), 1–28.

    Article  CAS  Google Scholar 

  4. Castro-Alamancos M.A., Connors B.W. 1997. Distinct forms of short-term plasticity at excitatory synapses of hippocampus and neocortex. Proc. Natl. Acad. Sci. USA. 94 (8), 4161–4166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tallent M.K., Varghis N., Skorobogatko Y., Hernandez-Cuebas L., Whelan K., Vocadlo D.J., Vosseller K. 2009. In vivo modulation of O-GIcNAc levels regulates hippocampal synaptic plasticity through interplay with phosphorylation. J. Biol. Chem. 284 (1), 174–181.

    Article  CAS  PubMed  Google Scholar 

  6. Hafner A.-S., Donlin-Asp P.G., Leitch B., Herzog E., Schuman E.M. 2019. Local protein synthesis is a ubiquitous feature of neuronal pre- and postsynaptic compartments. Science. 364 (6441), eaau3644.

  7. Kukushkin N.V., Carew T.J. 2017. Memory takes time. Neuron. 95 (2), 259–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bliss T.V.P., Collingridge G.L., Morris R.G.M., Reymann K.G. 2018. Long-term potentiation in the hippocampus: Discovery, mechanisms and function. Neuroforum. 24 (3), A103–A120.

    Article  Google Scholar 

  9. Artola A., Singer W. 1993. Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci. 16 (11), 480–487.

    Article  CAS  PubMed  Google Scholar 

  10. Lynch G., Larson J., Kelso S., Barrionuevo G., Schottler F. 1983. Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature. 305 (5936), 719–721.

    Article  CAS  PubMed  Google Scholar 

  11. Eccles J.C. 1983. Calcium in long-term potentiation as a model for memory. Neuroscience. 10 (4), 1071–1081.

    Article  CAS  PubMed  Google Scholar 

  12. Malenka R.C. 1991. The role of postsynaptic calcium in the induction of long-term potentiation. Mol. Neurobiol. 5 (2–4), 289–295.

    Article  CAS  PubMed  Google Scholar 

  13. Lüscher C., Malenka R.C. 2012. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb. Perspect. Biol. 4 (6), a005710–a005710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Flavell S.W., Greenberg M.E. 2008. Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu. Rev. Neurosci. 31 (1), 563–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tatsuo S. 1994. Protein kinases involved in the expression of long-term potentiation. Int. J. Biochem. 26 (6), 735–744.

    Article  Google Scholar 

  16. Ma H., Groth R.D., Wheeler D.G., Barrett C.F., Tsien R.W. 2011. Excitation–transcription coupling in sympathetic neurons and the molecular mechanism of its initiation. Neurosci. Res. 70 (1), 2–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Orlov S.N., Mongin A.A. 2007. Salt-sensing mechanisms in blood pressure regulation and hypertension. Am. J. Physiol. Circ. Physiol. 293 (4), H2039–H2053.

    Article  CAS  Google Scholar 

  18. Sobolevsky A.I., Rosconi M.P., Gouaux E. 2009. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature. 462 (7274), 745–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Linden D.J., Smeyne M., Connor J.A. 1993. Induction of cerebellar long-term depression in culture requires postsynaptic action of Sodium Ions. Neuron. 11 (6), 1093–1100.

    Article  CAS  PubMed  Google Scholar 

  20. Dickenson A.H. 2006. Amino acids: Excitatory. In: Neurotransmitters, Drugs Brain Funct. Chichester, UK: John Wiley & Sons, Ltd, p. 211–223.

    Google Scholar 

  21. Henley J.M., Wilkinson K.A. 2016. Synaptic AMPA receptor composition in development, plasticity and disease. Nat. Rev. Neurosci. 17 (6), 337–350.

    Article  CAS  PubMed  Google Scholar 

  22. Luscher C., Malenka R.C. 2012. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb. Perspect. Biol. 4, a005710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lalanne T., Oyrer J., Farrant M., Sjöström P.J. 2018. Synapse type-dependent expression of calcium-permeable AMPA receptors. Front. Synaptic Neurosci. 10, 1–8.

    Article  CAS  Google Scholar 

  24. Malinow R., Malenka R.C. 2002. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25 (1), 103–126.

    Article  CAS  PubMed  Google Scholar 

  25. Liu S.Q.J., Cull-Candy S.G. 2000. Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature. 405 (6785), 454–458.

    Article  CAS  PubMed  Google Scholar 

  26. Gielen M., Siegler Retchless B., Mony L., Johnson J.W., Paoletti P. 2009. Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature. 459 (7247), 703–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yuan H., Hansen K.B., Vance K.M., Ogden K.K., Traynelis S.F. 2009. Control of NMDA receptor function by the NR2 subunit amino-terminal domain. J. Neurosci. 29 (39), 12045–12058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hansen K.B., Furukawa H., Traynelis S.F. 2010. Control of assembly and function of glutamate receptors by the amino-terminal domain. Mol. Pharmacol. 78 (4), 535–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Karakas E., Furukawa H. 2014. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science. 344 (6187), 992–997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Uteshev V. V. 2012. α7 nicotinic ACh receptors as a ligand-gated source of Ca2+ ions: The search for a Ca2+ optimum. Adv Exp Med Biol. 740, 603–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bean B.P. 2007. The action potential in mammalian central neurons. Nat. Rev. Neurosci. 8 (6), 451–465.

    Article  CAS  PubMed  Google Scholar 

  32. Yu F.H., Catterall W.A. 2003. Overview of the voltage-gated sodium channel family. Genome Biol. 4 (3), 207.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Catterall W.A. 2000. From ionic currents to molecular mechanisms. Neuron. 26 (1), 13–25.

    Article  CAS  PubMed  Google Scholar 

  34. George A.L. 2005. Inherited disorders of voltage-gated sodium channels. J. Clin. Invest. 115 (8), 1990–1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Savio-Galimberti E., Gollob M.H., Darbar D. 2012. Voltage-gated sodium channels: Biophysics, pharmacology, and related channelopathies. Front. Pharmacol. 3, 1–19.

    Article  CAS  Google Scholar 

  36. Caldwell J.H., Schaller K.L., Lasher R.S., Peles E., Levinson S.R. 2000. Sodium channel Nav1.6 is localized at nodes of Ranvier, dendrites, and synapses. Proc. Natl. Acad. Sci. USA. 97 (10), 5616–5620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hu W., Tian C., Li T., Yang M., Hou H., Shu Y. 2009. Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation. Nat. Neurosci. 12 (8), 996–1002.

    Article  CAS  PubMed  Google Scholar 

  38. Duflocq A., Le Bras B., Bullier E., Couraud F., Davenne M. 2008. Nav1.1 is predominantly expressed in nodes of Ranvier and axon initial segments. Mol. Cell. Neurosci. 39 (2), 180–192.

    Article  CAS  PubMed  Google Scholar 

  39. Solé L., Tamkun M.M. 2020. Trafficking mechanisms underlying Nav channel subcellular localization in neurons. Channels. 14 (1), 1–17.

    Article  PubMed  Google Scholar 

  40. Kim Y., Hsu C.L., Cembrowski M.S., Mensh B.D., Spruston N. 2015. Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons. Elife. 4, 1–30.

    Article  CAS  Google Scholar 

  41. Miller C. 2000. An overview of the potassium channel family. Genome Biol. 1 (4), 1–5.

    Article  Google Scholar 

  42. Zemel B.M., Ritter D.M., Covarrubias M., Muqeem T. 2018. A-Type KV channels in dorsal root ganglion neurons: Diversity, function, and dysfunction. Front. Mol. Neurosci. 11, 1–17.

    Article  CAS  Google Scholar 

  43. Giese K.P., Storm J.F., Reuter D., Fedorov N.B., Shao L.R., Leicher T., Pongs O., Silva A.J. 1998. Reduced K+ channel inactivation, spike broadening, and after- hyperpolarization in Kvβ1.1-deficient mice with impaired learning. Learn. Mem. 5 (4–5), 257–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hofmann F., Lacinová L., Klugbauer N. 1999. Voltage-dependent calcium channels: From structure to function. Rev. Physiol. Biochem. Pharmacol. 139, 33–87.

    Article  CAS  PubMed  Google Scholar 

  45. Brehm P., Eckert R. 1978. Calcium entry leads to inactivation of calcium channel in Paramecium. Science. 202 (4373), 1203–1206.

    Article  CAS  PubMed  Google Scholar 

  46. Striessnig J., Pinggera A., Kaur G., Bock G., Tuluc P. 2014. L-type Ca2+ channels in heart and brain. Wiley Interdiscip. Rev. Membr. Transp. Signal. 3 (2), 15–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ma H., Cohen S., Li B., Tsien R.W. 2013. Exploring the dominant role of Cav1 channels in signalling to the nucleus. Biosci. Rep. 33 (1), 97–101.

    Article  CAS  Google Scholar 

  48. Di Biase V., Obermair G.J., Szabo Z., Altier C., Sanguesa J., Bourinet E., Flucher B.E. 2008. Stable membrane expression of postsynaptic CaV1.2 calcium channel clusters is independent of interactions with AKAP79/150 and APZ proteins. J. Neurosci. 28 (51), 13845–13855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jenkins M.A., Christel C.J., Jiao Y., Abiria S., Kim K.Y., Usachev Y.M., Obermair G.J., Colbran R.J., Lee A. 2010. Ca2+-Dependent facilitation of cav1.3 Ca2+ channels by densin and Ca2+/calmodulin-dependent protein kinase II. J. Neurosci. 30 (15), 5125–5135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Striessnig J., Koschak A. 2008. Exploring the function and pharmacotherapeutic potential of voltage-gated Ca2+ channels with gene Knockout models. Channels. 2 (4), 233–251.

    Article  PubMed  Google Scholar 

  51. Moosmang S., Haider N., Klugbauer N., Adelsberger H., Langwieser N., Müller J., Stiess M., Marais E., Schulla V., Lacinova L., Goebbels S., Nave K.A., Storm D.R., Hofmann F., Kleppisch T. 2005. Role of hippocampal Cav1.2 Ca2+ channels in NMDA receptor-independent synaptic plasticity and spatial memory. J. Neurosci. 25 (43), 9883–9892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. White J.A., McKinney B.C., John M.C., Powers P.A., Kamp T.J., Murphy G.G. 2008. Conditional forebrain deletion of the L-type calcium channel Ca V1.2 disrupts remote spatial memories in mice. Learn. Mem. 15 (1), 1–5.

    Article  CAS  PubMed  Google Scholar 

  53. Barad M. 2006. Divide and conquer: An L-type voltage-gated calcium channel subtype finds a role in conditioned fear: Commentary. Learn. Mem. 13 (5), 560–561.

    Article  CAS  PubMed  Google Scholar 

  54. Horrigan F.T., Aldrich R.W. 2002. Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels. J. Gen. Physiol. 120 (3), 267–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rothberg B.S., Magleby K.L. 1999. Gating kinetics of single large-conductance Ca2+-activated K+ channels in high Ca2+ suggest a two-tiered allosteric gating mechanism. J. Gen. Physiol. 114 (1), 93–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Berkefeld H., Sailer C.A., Bildl W., Rohde V., Thumfart J.O., Eble S., Klugbauer N., Reisinger E., Bischofberger J., Oliver D., Knaus H.G., Schultes U., Fakler B. 2006. BKCa-Cav channel complexes mediate rapid and localized Ca2+-activated K+ signaling. Science. 314 (5799), 615–620.

    Article  CAS  PubMed  Google Scholar 

  57. Berkefeld H., Fakler B. 2008. Repolarizing responses of BKCa-cav complexes are distinctly shaped by their cav subunits. J. Neurosci. 28 (33), 8238–8245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Raffaelli G., Saviane C., Mohajerani M.H., Pedarzani P., Cherubini E. 2004. BK potassium channels control transmitter release at CA3-CA3 synapses in the rat hippocampus. J. Physiol. 557 (1), 147–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang J., Guan X., Li Q., Meredith A.L., Pan H.L., Yan J. 2018. Glutamate-activated BK channel complexes formed with NMDA receptors. Proc. Natl. Acad. Sci. USA. 115 (38), E9006–E9014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li Q., Yan J. 2016. Modulation of BK channel function by auxiliary beta and gamma subunits. Physiol. Behav. 128, 51–90.

    CAS  Google Scholar 

  61. Li B., Gao T.M. 2016. Functional role of mitochondrial and nuclear BK channels. Int. Rev. Neurobiol. 128, 163–191.

    Article  CAS  PubMed  Google Scholar 

  62. Springer S.J., Burkett B.J., Schrader L.A. 2015. Modulation of BK channels contributes to activity-dependent increase of excitability through MTORC1 activity in CA1 pyramidal cells of mouse hippocampus. Front. Cell. Neurosci. 8, 1–12.

    Article  Google Scholar 

  63. Xia X.M., Fakler B., Rivard A., Wayman G., Johnson-Pais T., Keen J.E., Ishii T., Hirschberg B., Bond C.T., Lutsenko S., Maylie J., Adelman J.P. 1998. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature. 395 (6701), 503–507.

    Article  CAS  PubMed  Google Scholar 

  64. Kohler M., Hirschberg B., Bond C.T., Kinzie J.M., Marrion N. V., Maylie J., Adelman J.P. 1996. Small-conductance, calcium-activated potassium channels from mammalian brain. Science. 273 (5282), 1709–1714.

    Article  CAS  PubMed  Google Scholar 

  65. Hirschberg B., Maylie J., Adelman J.P., Marrion N. V. 1998. Gating of recombinant small-conductance Ca-activated K+ channels by calcium. J. Gen. Physiol. 111 (4), 565–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Logsdon N.J., Kang J., Togo J.A., Christian E.P., Aiyar J. 1997. A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes. J. Biol. Chem. 272 (52), 32 723–32 726.

    Article  Google Scholar 

  67. Ishii T.M., Silvia C., Hirschberg B., Bond C.T., Adelman J.P., Maylie J. 1997. A human intermediate conductance calcium-activated potassium channel. Proc. Natl. Acad. Sci. USA. 94 (21), 11 651–11 656.

    Article  Google Scholar 

  68. Sforna L., Megaro A., Pessia M., Franciolini F., Catacuzzeno L. 2018. Structure, gating and basic functions of the Ca2+-activated K channel of intermediate conductance. Curr. Neuropharmacol. 16 (5), 608–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. King B., Rizwan A.P., Asmara H., Heath N.C., Engbers J.D.T., Dykstra S., Bartoletti T.M., Hameed S., Zamponi G.W., Turner R.W. 2015. IKCa channels are a critical determinant of the slow AHP in CA1 pyramidal neurons. Cell Rep. 11 (2), 175–182.

    Article  CAS  PubMed  Google Scholar 

  70. Faber E.S.L., Delaney A.J., Sah P. 2005. SK channels regulate excitatory synaptic transmission and plasticity in the lateral amygdala. Nat. Neurosci. 8 (5), 635–641.

    Article  CAS  PubMed  Google Scholar 

  71. Marrion N. V., Tavalin S.J. 1998. Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature. 395 (6705), 900–905.

    Article  CAS  PubMed  Google Scholar 

  72. Ngo-Anh T.J., Bloodgood B.L., Lin M., Sabatini B.L., Maylie J., Adelman J.P. 2005. SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Nat. Neurosci. 8 (5), 642–649.

    Article  CAS  PubMed  Google Scholar 

  73. Hammond B., Lemen J., Dudek R., Ward D., Jiang C., Nemeth M., Burns J. 2006. Results of a 90-day safety assurance study with rats fed grain from corn rootworm-protected corn. Food Chem. Toxicol. 44 (2), 147–160.

    Article  CAS  PubMed  Google Scholar 

  74. Dryer S.E. 1994. Na+-activated K+ channels: A new family of large-conductance ion channels. Trends Neurosci. 17 (4), 155–160.

    Article  CAS  PubMed  Google Scholar 

  75. Kameyama M., Kakei M., Sato R., Shibasaki T., Matsuda H., Irisawa H. 1984. Intracellular Na+ activates a K+ channel in mammalian cardiac cells. Nature. 309 (5966), 354–356.

    Article  CAS  PubMed  Google Scholar 

  76. Budelli G., Hage T.A., Wei A., Rojas P., Ivy Jong Y.J., O’Malley K., Salkoff L. 2009. Na+-activated K+ channels express a large delayed outward current in neurons during normal physiology. Nat. Neurosci. 12 (6), 745–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lu S., Das P., Fadool D.A., Kaczmarek L.K. 2010. The slack sodium-activated potassium channel provides a major outward current in olfactory neurons of Kv1.3–/– super-smeller mice. J. Neurophysiol. 103 (6), 3311–3319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nuwer M.O., Picchione K.E., Bhattacharjee A. 2010. PKA-induced internalization of Slack KNa channels produces dorsal root ganglion neuron hyperexcitability. J. Neurosci. 30 (42), 14165–14172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hage T.A., Salkoff L. 2012. Sodium-activated potassium channels are functionally coupled to persistent sodium currents. J. Neurosci. 32 (8), 2714–2721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kaczmarek L.K. 2013. Slack, slick, and sodium-activated potassium channels. ISRN Neurosci. 2013, 1–14.

    Article  CAS  Google Scholar 

  81. Pfeiffer B.E., Huber K.M. 2009. The state of synapses in fragile X syndrome. Neurosci. 15 (5), 549–567.

    CAS  Google Scholar 

  82. Noma A. 1983. ATP-regulated K+ channels in cardiac muscle. Nature. 305 (5930), 147–148.

    Article  CAS  PubMed  Google Scholar 

  83. Seino S., Miki T. 2003. Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog. Biophys. Mol. Biol. 81 (2), 133–176.

    Article  CAS  PubMed  Google Scholar 

  84. Ashcroft F.M., Harrison D.E., Ashcroft S.J.H. 1984. Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells. Nature. 312 (5993), 446–448.

    Article  CAS  PubMed  Google Scholar 

  85. Haller M., Mironov S.L., Karschin A., Richter D.W. 2001. Dynamic activation of K ATP channels in rhythmically active neurons. J. Physiol. 537 (1), 69–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zawar C., Plant T.D., Schirra C., Konnerth A., Neumcke B. 1999. Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus. J. Physiol. 514 (2), 327–341.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Choeiri C., Staines W.A., Miki T., Seino S., Renaud J.M., Teutenberg K., Messier C. 2006. Cerebral glucose transporters expression and spatial learning in the K-ATP Kir6.2–/– knockout mice. Behav. Brain Res. 172 (2), 233–239.

    Article  CAS  PubMed  Google Scholar 

  88. Moriguchi S., Ishizuka T., Yabuki Y., Shioda N., Sasaki Y., Tagashira H., Yawo H., Yeh J.Z., Sakagami H., Narahashi T., Fukunaga K. 2018. Blockade of the K ATP channel Kir6.2 by memantine represents a novel mechanism relevant to Alzheimer’s disease therapy. Mol. Psychiatry. 23 (2), 211–221.

    Article  CAS  PubMed  Google Scholar 

  89. Brini M., Carafoli E. 2011. The Plasma Membrane Ca2+ ATPase and the plasma membrane Sodium Calcium exchanger cooperate in the regulation of cell Calcium. Cold Spring Harb. Perspect. Biol. 3 (2), 1–15.

    Article  CAS  Google Scholar 

  90. Jaffe D.B., Johnston D., Lasser-Ross N., Lisman J.E., Miyakawa H., Ross W.N. 1992. The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons. Nature. 357 (6375), 244–246.

    Article  CAS  PubMed  Google Scholar 

  91. Bennay M., Langer J., Meier S.D., Kafitz K.W., Rose C.R. 2008. Sodium signals in cerebellar Purkinje neurons and Bergmann glial cells evoked by glutamatergic synaptic transmission. Glia. 56 (10), 1138–1149.

    Article  PubMed  Google Scholar 

  92. Verkhratsky A. 2005. Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol. Rev. 85 (1), 201–279.

    Article  CAS  PubMed  Google Scholar 

  93. Block B.A., Imagawa T., Campbell K.P., Franzini-Armstrong C. 1988. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J. Cell Biol. 107 (6), 2587–2600.

    Article  CAS  PubMed  Google Scholar 

  94. Samsó M., Feng W., Pessah I.N., Allen P.D. 2009. Coordinated movement of cytoplasmic and transmembrane domains of RyR1 upon gating. PLoS Biol. 7 (4), e1000085.

    Article  PubMed Central  CAS  Google Scholar 

  95. Gao L., Tripathy A., Lu X., Meissner G. 1997. Evidence for a role of C-terminal amino acid residues in skeletal muscle Ca2+ release channel (ryanodine receptor) function. FEBS Lett. 412 (1), 223–226.

    Article  CAS  PubMed  Google Scholar 

  96. Kunerth S., Langhorst M.F., Schwarzmann N., Gu X., Huang L., Yang Z., Zhang L., Mills S.J., Zhang L.H., Potter B.V.L., Guse A.H. 2004. Amplification and propagation of pacemaker Ca2+ signals by cyclic ADP-ribose and the type 3 ryanodine receptor in T cells. J. Cell Sci. 117 (10), 2141–2149.

    Article  CAS  PubMed  Google Scholar 

  97. Gerasimenko J. V., Flowerdew S.E., Voronina S.G., Sukhomlin T.K., Tepikin A. V., Petersen O.H., Gerasimenko O. V. 2006. Bile acids induce Ca2+ release from both the endoplasmic reticulum and acidic intracellular calcium stores through activation of inositol trisphosphate receptors and ryanodine receptors. J. Biol. Chem. 281 (52), 40154–40163.

    Article  CAS  PubMed  Google Scholar 

  98. Sukhareva M., Smith S. V., Maric D., Barker J.L. 2002. Functional properties of ryanodine receptors in hippocampal neurons change during early differentiation in culture. J. Neurophysiol. 88 (3), 1077–1087.

    Article  CAS  PubMed  Google Scholar 

  99. Korkotian E., Segal M. 2011. Synaptopodin regulates release of calcium from stores in dendritic spines of cultured hippocampal neurons. J. Physiol. 589 (24), 5987–5995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Raymond C.R., Redman S.J. 2002. Different calcium sources are narrowly tuned to the induction of different forms of LTP. J. Neurophysiol. 88 (1), 249–255.

    Article  CAS  PubMed  Google Scholar 

  101. Raymond C.R., Redman S.J. 2006. Spatial segregation of neuronal calcium signals encodes different forms of LTP in rat hippocampus. J. Physiol. 570 (1), 97–111.

    Article  CAS  PubMed  Google Scholar 

  102. Balschun D., Wolfer D.P., Bertocchini F., Barone V., Conti A., Zuschratter W., Missiaen L., Lipp H.P., Frey J.U., Sorrentino V. 1999. Deletion of the ryanodine receptor type 3 (RyR3) impairs forms of synaptic plasticity and spatial learning. EMBO J. 18 (19), 5264–5273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Santulli G., Nakashima R., Yuan Q., Marks A.R. 2017. Intracellular calcium release channels: An uAPate. J. Physiol. 595 (10), 3041–3051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bezprozvanny I., Ehrlich B.E. 1994. Inositol (1,4,5)-trisphosphate (InsP3)-gated Ca channels from cerebellum: Conduction properties for divalent cations and regulation by intraluminal calcium. J. Gen. Physiol. 104 (5), 821–856.

    Article  CAS  PubMed  Google Scholar 

  105. Boehning D., Mak D.O.D., Foskett J.K., Joseph S.K. 2001. Molecular determinants of ion permeation and selectivity in inositol 1,4,5-trisphosphate receptor Ca2+ channels. J. Biol. Chem. 276 (17), 13 509–13 512.

    Article  Google Scholar 

  106. Boehning D., Joseph S.K., Mak D.O.D., Foskett J.K. 2001. Single-channel recordings of recombinant inositol trisphosphate receptors in mammalian nuclear envelope. Biophys. J. 81 (1), 117–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Marchenko S.M., Yarotskyy V. V., Kovalenko T.N., Kostyuk P.G., Thomas R.C. 2005. Spontaneously active and InsP3-activated ion channels in cell nuclei from rat cerebellar Purkinje and granule neurones. J. Physiol. 565 (3), 897–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fujii S., Matsumoto M., Igarashi K., Kato H., Mikoshiba K. 2000. Synaptic plasticity in hippocampal CA1 neurons of mice lacking type 1 inositol-1,4,5-trisphosphate receptors. Learn. Mem. 7 (5), 312–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Qiu Z., Nicoll D.A., Philipson K.D. 2001. Helix packing of functionally important regions of the cardiac Na+-Ca2+ exchanger. J. Biol. Chem. 276 (1), 194–199.

    Article  CAS  PubMed  Google Scholar 

  110. Nicoll D.A., Ottolia M., Lu L., Lu Y., Philipson K.D. 1999. A new topological model of the cardiac sarcolemmal Na+-Ca2+ exchanger. J. Biol. Chem. 274 (2), 910–917.

    Article  CAS  PubMed  Google Scholar 

  111. Hilge M., Aelen J., Vuister G.W. 2006. Ca2+ Regulation in the Na+ /Ca2+ exchanger involves two markedly different Ca2+ sensors. Mol. Cell. 22 (1), 15–25.

    Article  CAS  PubMed  Google Scholar 

  112. Lytton J. 2007. Na+/Ca2+ exchangers: Three mammalian gene families control Ca2+ transport. Biochem. J. 406 (3), 365–382.

    Article  CAS  PubMed  Google Scholar 

  113. Quednau B.D., Nicoll D.A., Philipson K.D. 2004. The sodium/calcium exchanger family SLC8. Pflügers Arch. Eur. J. Physiol. 447 (5), 543–548.

    Article  CAS  Google Scholar 

  114. Quednau B.D., Nicoll D.A., Philipson K.D. 1997. Tissue specificity and alternative splicing of the Na+/Ca2+ exchanger isoforms NCX1, NCX2, and NCX3 in rat. Am. J. Physiol. Physiol. 272 (4), C1250–C1261.

    Article  CAS  Google Scholar 

  115. DiPolo R., Beaugé L. 2006. Sodium/calcium exchanger: Influence of metabolic regulation on ion carrier interactions. Physiol. Rev. 86 (1), 155–203.

    Article  CAS  PubMed  Google Scholar 

  116. Blaustein M.P., Juhaszova M., Golovina V.A., Church P.J., Stanley E.F. 2006. Na/Ca exchanger and PMCA localization in neurons and astrocytes. Ann. N. Y. Acad. Sci. 976 (1), 356–366.

    Article  Google Scholar 

  117. Jeon D., Yang Y.M., Jeong M.J., Philipson K.D., Rhim H., Shin H.S. 2003. Enhanced learning and memory in mice lacking Na+/Ca2+ exchanger 2. Neuron. 38 (6), 965–976.

    Article  CAS  PubMed  Google Scholar 

  118. Molinaro P., Viggiano D., Nisticò R., Sirabella R., Secondo A., Boscia F., Pannaccione A., Scorziello A., Mehdawy B., Sokolow S., Herchuelz A., di Renzo G.F., Annunziato L. 2011. Na+-Ca2+ exchanger (NCX3) knock-out mice display an impairment in hippocampal long-term potentiation and spatial learning and memory. J. Neurosci. 31 (20), 7312–7321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Scheiner-Bobis G. 2002. The sodium pump. Eur. J. Biochem. 269 (10), 2424–2433.

    Article  CAS  PubMed  Google Scholar 

  120. Blanco G. 2005. Na,K-ATPase subunit heterogeneity as a mechanism for tissue-specific ion regulation. Semin. Nephrol. 25 (5), 292–303.

    Article  CAS  PubMed  Google Scholar 

  121. Hieber V., Siegel G.J., Fink D.J., Beaty M.W., Mata M. 1991. Differential distribution of (Na, K)-ATPase? isoforms in the central nervous system. Cell. Mol. Neurobiol. 11 (2), 253–262.

    Article  CAS  PubMed  Google Scholar 

  122. McGrail K., Phillips J., Sweadner K. 1991. Immunofluorescent localization of three Na,K-ATPase isozymes in the rat central nervous system: Both neurons and glia can express more than one Na,K-ATPase. J. Neurosci. 11 (2), 381–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Peng L., Martin-Vasallo P., Sweadner K.J. 1997. Isoforms of Na,K-ATPase α and β subunits in the rat cerebellum and in granule cell cultures. J. Neurosci. 17 (10), 3488–3502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Akkuratov E.E., Lopacheva O.M., Kruusmägi M., Lopachev A. V., Shah Z.A., Boldyrev A.A., Liu L. 2015. Functional interaction between Na/K-ATPase and NMDA receptor in cerebellar neurons. Mol. Neurobiol. 52 (3), 1726–1734.

    Article  CAS  PubMed  Google Scholar 

  125. Munzer J.S., Daly S.E., Jewell-Motz E.A., Lingrel J.B., Blostein R. 1994. Tissue- and isoform-specific kinetic behavior of the Na,K-ATPase. J. Biol. Chem. 269 (24), 16 668–16 676.

    Article  Google Scholar 

  126. Jewell E.A., Lingrel J.B. 1991. Comparison of the substrate dependence properties of the rat Na,K-ATPase α1, α2, and α3 isoforms expressed in HeLa cells. J. Biol. Chem. 266 (25), 16 925–16 930.

    Article  Google Scholar 

  127. Zahler R., Zhang Z.-T., Manor M., Boron W.F. 1997. Sodium kinetics of Na,K-ATPase α isoforms in intact transfected HeLa cells. J. Gen. Physiol. 110 (2), 201–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Dobretsov M. 2005. Neuronal function and alpha3 isoform of the Na/K-ATPase. Front. Biosci. 10, 2373–2396.

    Article  CAS  PubMed  Google Scholar 

  129. Azarias G., Kruusmägi M., Connor S., Akkuratov E.E., Liu X.-L., Lyons D., Brismar H., Broberger C., Aperia A. 2013. A Specific and essential role for Na,K-ATPase α3 in neurons co-expressing α1 and α3. J. Biol. Chem. 288 (4), 2734–2743.

    Article  CAS  PubMed  Google Scholar 

  130. Kim J.H., Sizov I., Dobretsov M., Von Gersdorff H. 2007. Presynaptic Ca2+ buffers control the strength of a fast post-tetanic hyperpolarization mediated by the α3 Na+/K+-ATPase. Nat. Neurosci. 10 (2), 196–205.

    Article  CAS  PubMed  Google Scholar 

  131. Glushchenko T.S., Izvarina N.L. 1997. Na+,K+-ATPase activity in neurons and glial cells of the olfactory cortex of the rat brain during the development of long-term potentiation. Neurosci. Behav. Physiol. 27 (1), 49–52.

    Article  CAS  PubMed  Google Scholar 

  132. Reich C.G., Mason S.E., Alger B.E. 2004. Novel form of LTD induced by transient, partial inhibition of the Na, K-pump in rat hippocampal CA1 cells. J. Neurophysiol. 91 (1), 239–247.

    Article  CAS  PubMed  Google Scholar 

  133. Niggli V., Sigel E., Carafoli E. 1982. The purified Ca2+ pump of human erythrocyte membranes catalyzes an electroneutral Ca2+-H+ exchange in reconstituted liposomal systems. J. Biol. Chem. 257 (5), 2350–2356.

    Article  CAS  PubMed  Google Scholar 

  134. Smallwood J.I., Waisman D.M., Lafreniere D., Rasmussen H. 1983. Evidence that the erythrocyte calcium pump catalyzes a Ca2+:nH+ exchange. J. Biol. Chem. 258 (18), 11 092–11 097.

    Article  Google Scholar 

  135. Di Leva F., Domi T., Fedrizzi L., Lim D., Carafoli E. 2008. The plasma membrane Ca2+ ATPase of animal cells: Structure, function and regulation. Arch. Biochem. Biophys. 476 (1), 65–74.

    Article  CAS  PubMed  Google Scholar 

  136. Greeb J., Shull G.E. 1989. Molecular cloning of a third isoform of the calmodulin-sensitive plasma membrane Ca2+-transporting ATPase that is expressed predominantly in brain and skeletal muscle. J. Biol. Chem. 264 (31), 18 569–18 576.

    Article  Google Scholar 

  137. Stauffer T.P., Guerini D., Carafoli E. 1995. Tissue distribution of the four gene products of the plasma membrane Ca pump. J. Biol. Chem. 270 (20), 12184–12190.

    Article  CAS  PubMed  Google Scholar 

  138. Mata A.M. 2010. Plasma membrane Ca2+-ATPases in the nervous system during development and ageing. World J. Biol. Chem. 1 (7), 229.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Burette A.C., Strehler E.E., Weinberg R.J. 2009. ‘Fast’ plasma membrane calcium pump PMCA2a concentrates in GABAergic terminals in the adult rat brain. J. Comp. Neurol. 512 (4), 500–513.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Strehler E.E., Filoteo A.G., Penniston J.T., Caride A.J. 2007. Plasma-membrane Ca2+ pumps: Structural diversity as the basis for functional versatility. Biochem. Soc. Trans. 35 (5), 919–922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Marques-da-Silva D., Gutierrez-Merino C. 2014. Caveolin-rich lipid rafts of the plasma membrane of mature cerebellar granule neurons are microcompartments for calcium/reactive oxygen and nitrogen species cross-talk signaling. Cell Calcium. 56 (2), 108–123.

    Article  CAS  PubMed  Google Scholar 

  142. Garside M.L., Turner P.R., Austen B., Strehler E.E., Beesley P.W., Empson R.M. 2009. Molecular interactions of the plasma membrane calcium ATPase 2 at pre- and post-synaptic sites in rat cerebellum. Neuroscience. 162 (2), 383–395.

    Article  CAS  PubMed  Google Scholar 

  143. Zanni G., Calì T., Kalscheuer V.M., Ottolini D., Barresi S., Lebrun N., Montecchi-Palazzi L., Hu H., Chelly J., Bertini E., Brini M., Carafoli E. 2012. Mutation of plasma membrane Ca2+ ATPase isoform 3 in a family with X-linked congenital cerebellar ataxia impairs Ca2+ homeostasis. Proc. Natl. Acad. Sci. USA. 109 (36), 14 514–14 519.

    Article  Google Scholar 

  144. Kip S.N., Gray N.W., Burette A., Canbay A., Weinberg R.J., Strehler E.E. 2006. Changes in the expression of plasma membrane calcium extrusion systems during the maturation of hippocampal neurons. Hippocampus. 16 (1), 20–34.

    Article  CAS  PubMed  Google Scholar 

  145. Misquitta C.M., Mack D.P., Grover A.K. 1999. Sarco/endoplasmic reticulum Ca2+(SERCA)-pumps: Link to heart beats and calcium waves. Cell Calcium. 25 (4), 277–290.

    Article  CAS  PubMed  Google Scholar 

  146. Verboomen H., Wuytack F., Van den Bosch L., Mertens L., Casteels R. 1994. The functional importance of the extreme C-terminal tail in the gene 2 organellar Ca2+-transport ATPase (SERCA2a/b). Biochem. J. 303 (3), 979–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Majewska A., Brown E., Ross J., Yuste R. 2000. Mechanisms of calcium decay kinetics in hippocampal spines: Role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization. J. Neurosci. 20 (5), 1722–1734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Emptage N.J., Reid C.A., Fine A. 2001. Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release. Neuron. 29 (1), 197–208.

    Article  CAS  PubMed  Google Scholar 

  149. Collingridge B.Y.G.L., Kehl S.J., Mclennan H. 1983. Excitatory amino acids in synaptic transmission in the schaffer collateral-commissural pathway of the rat hippocampus. J. Physiol. 334, 33–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Bliss T. V., Collingridge G.L. 1993. A synaptic model of memory: Long-term potentiation in the hippocampus. Nature. 361 (6407), 31–39.

    Article  CAS  PubMed  Google Scholar 

  151. Aniksztejn L., Ben-Ari Y. 1995. Expression of LTP by AMPA and/or NMDA receptors is determined by the extent of NMDA receptors activation during the tetanus. J. Neurophysiol. 74 (6), 2349–2357.

    Article  CAS  PubMed  Google Scholar 

  152. Berridge M.J. 1998. Neuronal calcium signaling. Neuron. 21 (1), 13–26.

    Article  CAS  PubMed  Google Scholar 

  153. Malenka R.C., Lancaster B., Zucker R.S. 1992. Temporal limits on the rise in postsynaptic calcium required for the induction of long-term potentiation. Neuron. 9 (1), 121–128.

    Article  CAS  PubMed  Google Scholar 

  154. Santana L.F. 2008. Editorial: NFAT-dependent excitation-transcription coupling in heart. Circ. Res. 103 (7), 681–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gundersen K. 2011. Excitation-transcription coupling in skeletal muscle: The molecular pathways of exercise. Biol. Rev. 86 (3), 564–600.

    Article  PubMed  Google Scholar 

  156. Morgan J.I., Curran T. 1989. Stimulus-transcription coupling in neurons: Role of cellular immediate-early genes. Trends Neurosci. 12 (11), 459–462.

    Article  CAS  PubMed  Google Scholar 

  157. Sheng M., Greenberg M.E. 1990. The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron. 4 (4), 477–485.

    Article  CAS  PubMed  Google Scholar 

  158. Cole A.J., Saffen D.W., Baraban J.M., Worley P.F. 1989. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature. 340 (6233), 474–476.

    Article  CAS  PubMed  Google Scholar 

  159. Fleischmann A., Hvalby O., Jensen V., Strekalova T., Zacher C., Layer L.E., Kvello A., Reschke M., Spanagel R., Sprengel R., Wagner E.F., Gass P. 2003. Impaired long-term memory and NR2A-type NMDA receptor-dependent synaptic plasticity in mice lacking c-fos in the CNS. J. Neurosci. 23 (27), 9116–9122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Minatohara K., Akiyoshi M., Okuno H. 2016. Role of immediate-early genes in synaptic plasticity and neuronal ensembles underlying the memory trace. Front. Mol. Neurosci. 8, 1–11.

    Article  CAS  Google Scholar 

  161. Greenberg M.E., Ziff E.B., Greene L.A. 1986. Stimulation of neuronal acetylcholine receptors induces rapid gene transcription. Science. 234 (4772), 80–83.

    Article  CAS  PubMed  Google Scholar 

  162. Orlov S.N., Aksentsev S.L., Kotelevtsev S. V. 2005. Extracellular calcium is required for the maintenance of plasma membrane integrity in nucleated cells. Cell Calcium. 38 (1), 53–57.

    Article  CAS  PubMed  Google Scholar 

  163. Koltsova S. V., Tremblay J., Hamet P., Orlov S.N. 2015. Transcriptomic changes in Ca2+-depleted cells: Role of elevated intracellular [Na+]/[K+] ratio. Cell Calcium. 58 (3), 317–324.

    Article  CAS  PubMed  Google Scholar 

  164. Deisseroth K., Heist E.K., Tsien R.W. 1998. Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature. 392 (6672), 198–202.

    Article  CAS  PubMed  Google Scholar 

  165. Ma H., Groth R.D., Cohen S.M., Emery J.F., Li B., Hoedt E., Zhang G., Neubert T.A., Tsien R.W. 2014. γcaMKII shuttles Ca2+/CaM to the nucleus to trigger CREB phosphorylation and gene expression. Cell. 159 (2), 281–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Malenka R.C., Kauer J.A., Perkel D.J., Mauk M.D., Kelly P.T., Nicoll R.A., Waxham M.N. 1989. An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature. 340 (6234), 554–557.

    Article  CAS  PubMed  Google Scholar 

  167. Mcdonald T.F., Pelzer S., Trautwein W., Pelzer D.J. 1994. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol. Rev. 74 (2), 365–507.

    Article  CAS  PubMed  Google Scholar 

  168. Greer P.L., Greenberg M.E. 2008. From synapse to nucleus: Calcium-dependent gene transcription in the control of synapse development and function. Neuron. 59 (6), 846–860.

    Article  CAS  PubMed  Google Scholar 

  169. Clapham D.E. 2007. Calcium signaling. Cell. 131 (6), 1047–1058.

    Article  CAS  PubMed  Google Scholar 

  170. Derkach V., Barria A., Soderling T.R. 1999. Ca2+/calmodulin-kinase II enhances channel conductance of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc. Natl. Acad. Sci. USA. 96 (6), 3269–3274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kristensen A.S., Jenkins M. a., Banke T.G., Schousboe A., Johnson R.C., Huganir R., Traynelis S.F. 2011. Mechanism of CaMKII regulation of AMPA receptor gating. Nat. Neurosci. 14 (6), 727–735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mitsushima D., Ishihara K., Sano A., Kessels H.W., Takahashi T. 2011. Contextual learning requires synaptic AMPA receptor delivery in the hippocampus. Proc. Natl. Acad. Sci. USA. 108 (30), 12 503–12 508.

    Article  Google Scholar 

  173. Banke T.G., Bowie D., Lee H., Huganir R.L., Schousboe A., Traynelis S.F. 2000. Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J. Neurosci. 20 (1), 89–102.

  174. Chetkovich D.M., Gray R., Johnston D., Sweatt J.D. 1991. N-Methyl-D-aspartate receptor activation increases cAMP levels and voltage-gated Ca2+ channel activity in area CA1 of hippocampus. Proc. Natl. Acad. Sci. USA. 88 (15), 6467–6471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lau C.G., Takeuchi K., Rodenas-Ruano A., Takayasu Y., Murphy J., Bennett M.V.I., Zukin R.S. 2009. Regulation of NMDA receptor Ca2+ signalling and synaptic plasticity. Biochem. Soc. Trans. 37 (6), 1369–1374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Aman T.K., Maki B.A., Ruffino T.J., Kasperek E.M., Popescu G.K. 2014. Separate intramolecular targets for protein kinase A control N-Methyl-D-aspartate receptor gating and Ca2+ permeability. J. Biol. Chem. 289 (27), 18 805–18 817.

    Article  CAS  Google Scholar 

  177. Matthews R.P., Guthrie C.R., Wailes L.M., Zhao X., Means A.R., McKnight G.S. 1994. Calcium/calmodulin-dependent protein kinase types II and IV differentially regulate CREB-dependent gene expression. Mol. Cell. Biol. 14 (9), 6107–6116.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Reymann K.G., Frey U., Jork R., Matthies H. 1988. Polymyxin B, an inhibitor of protein kinase C, prevents the maintenance of synaptic long-term potentiation in hippocampal CA1 neurons. Brain Res. 440 (2), 305–314.

    Article  CAS  PubMed  Google Scholar 

  179. Kauer J.A., Malenka R.C., Nicoll R.A. 1988. A persistent postsynaptic modification mediates long-term potentiation in the hippocampus. Neuron. 1 (10), 911–917.

    Article  CAS  PubMed  Google Scholar 

  180. Lovinger D.M., Wong K.L., Murakami K., Routtenberg A. 1987. Protein kinase C inhibitors eliminate hippocampal long-term potentiation. Brain Res. 436 (1), 177–183.

    Article  CAS  PubMed  Google Scholar 

  181. Finkbeiner S., Greenberg M.E. 1996. Ca2+-dependent routes to Ras: Mechanisms for neuronal survival, differentiation, and plasticity? Neuron. 16 (2), 233–236.

    Article  CAS  PubMed  Google Scholar 

  182. Herring B.E., Nicoll R.A. 2016. Long-term potentiation: From CaMKII to AMPA receptor trafficking. Annu. Rev. Physiol. 78 (1), 351–365.

    Article  CAS  PubMed  Google Scholar 

  183. Murakoshi H., Wang H., Yasuda R. 2011. Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature. 472 (7341), 100–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Lynch G., Rex C.S., Gall C.M. 2007. LTP consolidation: Substrates, explanatory power, and functional significance. Neuropharmacology. 52 (1), 12–23.

    Article  CAS  PubMed  Google Scholar 

  185. Amini M., Ma C. -l., Farazifard R., Zhu G., Zhang Y., Vanderluit J., Zoltewicz J.S., Hage F., Savitt J.M., Lagace D.C., Slack R.S., Beique J.-C., Baudry M., Greer P.A., Bergeron R., Park D.S. 2013. Conditional disruption of calpain in the CNS alters dendrite morphology, impairs LTP, and promotes neuronal survival following injury. J. Neurosci. 33 (13), 5773–5784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Baeza-Lehnert F., Saab A.S., Gutiérrez R., Larenas V., Díaz E., Horn M., Vargas M., Hösli L., Stobart J., Hirrlinger J., Weber B., Barros L.F. 2019. Non-canonical control of neuronal energy status by the Na+ pump. Cell Metab. 29 (3), 668–680.e4.

    Article  CAS  PubMed  Google Scholar 

  187. Kiedrowski L., Wroblewski J.T., Costa E. 1994. Intracellular sodium concentration in cultured cerebellar granule cells challenged with glutamate. Mol. Pharmacol. 45 (5), 1050–1054.

    CAS  PubMed  Google Scholar 

  188. Rose C.R., Konnerth A. 2001. NMDA receptor-mediated Na+ signals in spines and dendrites. J. Neurosci. 21 (12), 4207–4214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Somjen G.G. 2002. Ion regulation in the brain: Implications for pathophysiology. Neuroscientist. 8 (3), 254–267.

    Article  CAS  PubMed  Google Scholar 

  190. Deitmer J.W., Rose C.R. 2010. Ion changes and signalling in perisynaptic glia. Brain Res. Rev. 63 (1–2), 113–129.

    Article  CAS  PubMed  Google Scholar 

  191. Verkhratsky A., Noda M., Parpura V., Kirischuk S. 2013. Sodium fluxes and astroglial function. Adv. Exp. Med. Biol. 961, 295–305.

    Article  CAS  PubMed  Google Scholar 

  192. Callaway J.C., Ross W.N. 1997. Spatial distribution of synaptically activated sodium concentration changes in cerebellar Purkinje neurons. J. Neurophysiol. 77 (1), 145–152.

    Article  CAS  PubMed  Google Scholar 

  193. Miyazaki K., Ross W.N. 2017. Sodium dynamics in pyramidal neuron dendritic spines: Synaptically evoked entry predominantly through AMPA receptors and removal by diffusion. J. Neurosci. 37 (41), 9964–9976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Behnisch T., Reymann K.G. 1995. Thapsigargin blocks long-term potentiation induced by weak, but not strong tetanisation in rat hippocampal CA1 neurons. Neurosci. Lett. 192 (3), 185–188.

    Article  CAS  PubMed  Google Scholar 

  195. Balschun D., Wolfer D.P., Gass P., Mantamadiotis T., Welzl H., Schütz G., Frey J.U., Lipp H.P. 2003. Does cAMP response element-binding protein have a pivotal role in hippocampal synaptic plasticity and hippocampus-dependent memory? J. Neurosci. 23 (15), 6304–6314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Koltsova S. V., Trushina Y., Haloui M., Akimova O.A., Tremblay J., Hamet P., Orlov S.N. 2012. Ubiquitous [Na+]i/[K+]i-sensitive transcriptome in mammalian cells: Evidence for Ca2+ i-independent excitation-transcription coupling. PLoS One. 7 (5), e38032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Kasahara J., Fukunaga K., Miyamoto E. 2001. Activation of calcium/calmodulin-dependent protein kinase IV in long term potentiation in the rat hippocampal CA1 region. J. Biol. Chem. 276 (26), 24 044–24 050.

    Article  Google Scholar 

  198. Taurin S., Dulin N.O., Pchejetski D., Grygorczyk R., Tremblay J., Hamet P., Orlov S.N. 2002. c-Fos expression in ouabain-treated vascular smooth muscle cells from rat aorta: Evidence for an intracellular-sodium-mediated, calcium-independent mechanism. J. Physiol. 543 (3), 835–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Haloui M., Taurin S., Akimova O.A., Guo D.F., Tremblay J., Dulin N.O., Hamet P., Orlov S.N. 2007. [Na+]i-induced c-Fos expression is not mediated by activation of the 5′-promoter containing known transcriptional elements. FEBS J. 274 (14), 3557–3567.

    Article  CAS  PubMed  Google Scholar 

  200. Orlov S.N., Taurin S., Tremblay J., Hamet P. 2001. Inhibition of Na+,K+ pump affects nucleic acid synthesis and smooth muscle cell proliferation via elevation of the [Na+]i/ [K+]i ratio: Possible implication in vascular remodelling. J. Hypertens. 19 (9), 1559–1565.

    Article  CAS  PubMed  Google Scholar 

  201. Smolyaninova L. V., Shiyan A.A., Kapilevich L. V., Lopachev A. V., Fedorova T.N., Klementieva T.S., Moskovtsev A.A., Kubatiev A.A., Orlov S.N. 2019. Transcriptomic changes triggered by ouabain in rat cerebellum granule cells: Role of α3- And α1- Na+,K+-ATPase-mediated signaling. PLoS One. 14 (9), 1–23.

    Article  CAS  Google Scholar 

  202. Yang H., Chen C. 2008. Cyclooxygenase-2 in synaptic signaling. Curr. Pharm. Des. 14 (14), 1443–1451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Yamagata K., Andreasson K.I., Kaufmann W.E., Barnes C.A., Worley P.F. 1993. Expression of a mitogen-inducible cyclooxygenase in brain neurons: Regulation by synaptic activity and glucocorticoids. Neuron. 11 (2), 371–386.

    Article  CAS  PubMed  Google Scholar 

  204. Chen C., Magee J.C., Bazan N.G. 2002. Cyclooxygenase-2 regulates prostaglandin E2 signaling in hippocampal long-term synaptic plasticity. J. Neurophysiol. 87 (6), 2851–2857.

    Article  CAS  PubMed  Google Scholar 

  205. Sang N., Chen C. 2006. Lipid signaling and synaptic plasticity. Neuroscientist. 12 (5), 425–434.

    Article  CAS  PubMed  Google Scholar 

  206. Yagami T., Koma H., Yamamoto Y. 2016. Pathophysiological roles of cyclooxygenases and prostaglandins in the central nervous system. Mol. Neurobiol. 53 (7), 4754–4771.

    Article  CAS  PubMed  Google Scholar 

  207. Koelle M.R. 1997. A new family of G-protein regulators – the RGS proteins. Curr. Opin. Cell Biol. 9 (2), 143–147.

    Article  CAS  PubMed  Google Scholar 

  208. Ingi T., Krumins A.M., Chidiac P., Brothers G.M., Chung S., Snow B.E., Barnes C.A., Lanahan A.A., Siderovski D.P., Ross E.M., Gilman A.G., Worley P.F. 1998. Dynamic regulation of RGS2 suggests a novel mechanism in G-protein signaling and neuronal plasticity. J. Neurosci. 18 (18), 7178–7188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Leslie J.H., Nedivi E. 2011. Activity-regulated genes as mediators of neural circuit plasticity. Prog. Neurobiol. 94 (3), 223–237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Rudy J.W. 2014. The neurobiology of learning and memory. Sunderland, MA: Sinauer Associates, Inc. Publishers, p. 48–55.

    Google Scholar 

  211. Xu X., Shrager P. 2005. Dependence of axon initial segment formation on Na+ channel expression. J. Neurosci. Res. 79 (4), 428–441.

    Article  CAS  PubMed  Google Scholar 

  212. Oda T., Makino K., Yamashita I., Namba K., Maéda Y. 2001. Distinct structural changes detected by X-ray fiber diffraction in stabilization of F-actin by lowering pH and increasing ionic strength. Biophys. J. 80 (2), 841–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Rajamanickam G.D., Kroetsch T., Kastelic J.P., Thundathil J.C. 2017. Testis-specific isoform of Na/K-ATPase (ATP1A4) regulates sperm function and fertility in dairy bulls through potential mechanisms involving reactive oxygen species, calcium and actin polymerization. Andrology. 5 (4), 814–823.

    Article  CAS  PubMed  Google Scholar 

  214. Rajasekaran A.K., Rajasekaran S.A. 2003. Role of Na-K-ATPase in the assembly of tight junctions. Am. J. Physiol.Ren. Physiol. 285, 388–396.

    Article  Google Scholar 

  215. La J., Reed E.B., Koltsova S., Akimova O., Hamanaka R.B., Mutlu G.M., Orlov S.N., Dulin N.O. 2016. Regulation of myofibroblast differentiation by cardiac glycosides. Am. J. Physiol.Lung Cell. Mol. Physiol. 310 (9), L815–L823.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Alder J., Thakker-Varia S., Bangasser D.A., Kuroiwa M., Plummer M.R., Shors T.J., Black I.B. 2003. Brain-derived neurotrophic factor-induced gene expression reveals novel actions of VGF in hippocampal synaptic plasticity. J. Neurosci. 23 (34), 10 800–10 808.

    Article  Google Scholar 

  217. Altar C.A., Laeng P., Jurata L.W., Brockman J.A., Lemire A., Bullard J., Bukhman Y. V., Young T.A., Charles V., Palfreyman M.G. 2004. Electroconvulsive seizures regulate gene expression of distinct neurotrophic signaling pathways. J. Neurosci. 24 (11), 2667–2677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Sidorenko S., Klimanova E., Milovanova K., Lopina O.D., Kapilevich L.V., Chibalin A.V., Orlov S.N. 2018. Transcriptomic changes in C2C12 myotubes triggered by electrical stimulation: Role of \({\text{Ca}}_{{\text{i}}}^{{2 + }}\)-mediated and \({\text{Ca}}_{{\text{i}}}^{{2 + }}\)-independent signaling and elevated [Na+]i/[K+]i ratio. Cell Calcium. 76, 72–86.

    Article  CAS  PubMed  Google Scholar 

  219. Ng A.N., Toresson H. 2011. Endoplasmic reticulum dynamics in hippocampal dendritic spines induced by agonists of type I metabotropic glutamate but not by muscarinic acetylcholine receptors. Synapse. 65 (4), 351–355.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 19-14-50 358).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Smolyaninova.

Ethics declarations

The authors state that there is no conflict of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Puchkov

Abbreviations: AMPAR, AMPA receptors; AP, action potential; APV, aminophosphovaleric acid; CaM, calmodulin; CaV, voltage-dependent Ca2+ channels; CIRC, calcium-induced release of calcium; CNQX, cyanquinoxalin; CP-AMPAR, Ca2+-permeable AMPA receptors; EPR, endoplasmic reticulum; ETC, excitation–transcription coupling; IAS, initial axon segments; IEG, immediate early genes; InsP3R, inositol-3-phosphate receptors; LTD, long-term depression; LTP, long-term potentiation; KATP, ATP-sensitive K+ channels; KCa, Ca2+-activated K+ channels; KNa, Na+-activated K+ channels; KV, voltage-dependent K+ channels; MP, membrane potential; NaV, voltage-dependent Na+ channels; NCX, Na+/Ca2+ exchanger; NMDAR, NMDA receptors; PMCA, plasma membrane Ca2+-ATPase; RP, resting potential; RyR, ryanodine receptors; SERCA, endoplasmic reticulum Ca2+-ATPase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolyaninova, L.V., Shiyan, A.A., Maksimov, G.V. et al. Contribution of Monovalent (Na+ and K+) and Divalent (Ca2+) Ions to the Mechanisms of Synaptic Plasticity. Biochem. Moscow Suppl. Ser. A 15, 1–20 (2021). https://doi.org/10.1134/S1990747820050062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747820050062

Keywords:

Navigation