Skip to main content
Log in

Vesicle Delivery Systems of Biologically Active Compounds: From Liposomes to Cerasomes

  • REVIEWS
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Modern pharmaceutics aims at creating new drugs with high bioavailability, biocompatibility and efficiency, as well as minimally toxic effects. One of the ways to reach this goal is to create nanosized particles that carry a small but sufficient dose of a medicinal drug. The diversity of nanoscale delivery systems allows designing therapeutic complexes with necessary characteristics. Liposomes are lipid vesicles with a bilayer membrane possessing the properties required for transportation of various drugs and genes. They consist of natural components, which can minimize cytotoxicity. In addition, the creation of artificial cationic lipids makes it possible to adjust the properties of delivery systems to particular purposes. Cerasomes are organosilicon particles that have been developed to overcome the low stability of liposomes. These are nanoscale spherical aggregates consisting, like liposomes, of a lipid bilayer, but their surface is modified by a silicone polymer network. Cerasomes have all advantages of liposomes. This review presents basic methods for the synthesis of liposome components and cerasome-forming lipids to create stable delivery systems. Different variants of cationic lipid structures and modifications of cerasome-forming lipids are presented. Potential areas of their application are described, including gene transfection, photodynamic therapy, visualization and diagnosis of diseases using magnetic resonance, and tumor treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Dickler H.B., Collier E. 1994. Gene therapy in the treatment of disease. J. Allergy and Clinical Immunol. 94 (6), 942–951.

    Article  CAS  Google Scholar 

  2. Patra J.K., Das G., Fraceto L.F., Campos E.V.R., Rodriguez-Torres M.P., Acosta-Torres L.S., Diaz-Torres L.A., Grillo R., Swamy M.K., Sharma S., Habtemariam S., Shin H.-S. 2018. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 16 (1), 71–104.

    Article  CAS  Google Scholar 

  3. Yin H., Kanasty R., Eltoukhy A., Vegas A.J., Dorkin J.R., Anderson D.G. 2014. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541–555.

    Article  CAS  PubMed  Google Scholar 

  4. Akinc A., Maier M.A., Manoharan M., Fitzgerald K., Jayaraman M., Barros S., Ansell S., Du X., Hope M.J., Madden T.D., Mui B.L., Semple S.C., Tam Y.K., Ciufolini M., Witzigmann D., Kulkarni J.A., Meel R., Cullis P.R. 2019. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nature Nanotech. 14, 1084–1087.

    Article  CAS  Google Scholar 

  5. Carter M. 2015. Chapter 11. Gene delivery strategies. In: Guide to research techniques in neuroscience. New York: Acad. Press, p. 239–252.

    Google Scholar 

  6. Alavi M., Karimi N., Safaei M. 2017. Application of various types of liposomes in drug delivery systems. Adv. Pharm. Bull. 7(1), 3–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tazina E.V., Ignatyeva E.V., Polozkova A.P., Orlova O.L., Oborotova N.A. 2008. Production technology and analysis of temperature-dependent liposomal dosage form of doxorubicin. Khim. Farm. Zh. (Rus.). 42 (12), 30–35.

    Google Scholar 

  8. Patil Y.P., Jadhav S. 2014. Novel methods for liposome preparation. Chem. Phys. Lipids. 177, 8–18.

    Article  CAS  PubMed  Google Scholar 

  9. Dan N. 2015. Lipid-nucleic acid supramolecular complexes: Lipoplex structure and the kinetics of formation. AIMS Biophysics. 2 (2), 163–183.

    Article  CAS  Google Scholar 

  10. Kim T.K., Eberwine J.H. 2010. Mammalian cell transfection: The present and the future. Analytical and Bioanalytical Chemistry. 397 (8), 3173–3178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Knudsen K.B., Northeved H., Kumar P.E., Permin A., Gjetting T., Andresen T.L., Larsen S., Wegener K.M., Lykkesfeldt J., Jantzen K., Loft S., Møller P., Roursgaard M. 2015. In vivo toxicity of cationic micelles and liposomes. Nanomedicine. 11 (2), 467–477.

    Article  CAS  PubMed  Google Scholar 

  12. Akbarzadeh A., Rezaei-Sadabady R., Davaran S., Joo S.W., Zarghami N., Hanifehpour Y., Samiei M., Kouhi M., Nejati-Koshki K. 2013. Liposome: Classification, preparation, and applications. Nanoscale Research Letters. 8 (1), 102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Shim G., Kim M.-G., Park J.Y., Oh Y.-K. 2013. Application of cationic liposomes for delivery of nucleic acids. Asian J. Pharm. Sci. 8, 72–80.

    Article  CAS  Google Scholar 

  14. Liang X., Li X., Jing L., Xue P., Jiang L., Ren Q., Dai Z. 2013. Design and synthesis of lipidic organoalkoxysilanes for self-assembly of liposomal nanohybrid cerasomes with controlled drug release properties. Chem. Eur. J. 19 (47), 16 113–16 121.

    Article  CAS  Google Scholar 

  15. Sabın J., Prieto G., Ruso J.M., Hidalgo-Álvarez R., Sarmiento F. 2006. Size and stability of liposomes: A possible role of hydration and osmotic forces. The European Phys. J. 20, 401–408.

    Google Scholar 

  16. Sandeep K., Sunilkumar K.T., Sudheer B., Mohanvarma M. 2013. Liposomal drug delivery system–A comprehensive review. Int. J. Drug Dev. Res. 5 (4), 62–75.

    Google Scholar 

  17. Ghosh Y.K., Visweswariah S.S., Bhattacharya S. 2002. Advantage of the ether linkage between the positive charge and the cholesteryl skeleton in cholesterol-based amphiphiles as vectors for gene delivery. Bioconjugate Chem. 13, 378–384.

    Article  CAS  Google Scholar 

  18. Ghosh Y.K., Visweswariah S.S., Bhattacharya S. 2000. Nature of linkage between the cationic headgroup and cholesteryl skeleton controls gene transfection efficiency FEBS letters. 473, 341–344.

    Article  CAS  PubMed  Google Scholar 

  19. Banerjee R., Mahidhar Y.V., Chaudhuri A., Gopal V., Rao N.M. 2001. Design, synthesis, and transfection biology of novel cationic glycolipids for use in liposomal gene delivery J. Med. Chem. 44, 4176–4185.

    Article  CAS  PubMed  Google Scholar 

  20. Sarker S.R., Arai S., Murate M., Takahashi H., Takata M., Kobayashi T., Takeoka S. 2012. Evaluation of the influence of ionization states and spacers in the thermotropic phase behaviour of amino acid-based cationic lipids and the transfection efficiency of their assemblies. Int. J. Pharmaceutics. 422, 364–373.

    Article  CAS  Google Scholar 

  21. Obata Y., Saito S., Takeda N., Takeoka S. 2009. Plasmid DNA-encapsulating liposomes: Effect of a spacer between the cationic head group and hydrophobic moieties of the lipids on gene expression efficiency. Biochim. Biophys. Acta. 1788, 1148–1158.

    Article  CAS  PubMed  Google Scholar 

  22. Loew S., Fahr A., May S. 2011. Modeling the release kinetics of poorly water-soluble drug molecules from liposomal nanocarriers. J. Drug Deliv. 376548.

  23. Yi W.J., Zheng L.T., Su R.C., Liu Q., Zhao Z.-G. 2015. Amino acid-based cationic lipids with alpha-tocopherol hydrophobic tail for efficient gene delivery. Chem. Biol. Drug Design. 86, 1192–1202.

    Article  CAS  Google Scholar 

  24. Zhi D., Zhang S., Wang B., Zhao Y., Yang B., Yu S. 2010. Transfection efficiency of cationic lipids with different hydrophobic domains in gene delivery. Bioconjugate Chem. 21, 563–577.

    Article  CAS  Google Scholar 

  25. Pinnaduwage P., Schmitt L., Huang L. 1989. Use of a quaternary ammonium detergent in liposome mediated DNA transfection of mouse L-cells. Biochim. Biophys. Acta. 985, 33–37.

    Article  CAS  PubMed  Google Scholar 

  26. Cameron F.H., Moghaddam M.J., Bender V.J., Whittaker R.G., Mott M., Lockett T.J. 1999. A transfection compound series based on a versatile Tris linkage. Biochim. Biophys. Acta. 1417, 37–50.

    Article  CAS  PubMed  Google Scholar 

  27. Obika S., Yu W., Shimoyama A., Uneda T., Miyashita K., Doi T., Imanishi T. 2001. Symmetrical cationic triglycerides: An efficient synthesis and application to gene transfer. Bioorgan. Med. Chem. 9, 245–254.

    Article  CAS  Google Scholar 

  28. Felgner J.H., Kumar R., Sridhar C.N., Wheeler C.J., Tsai Y.J., Border R., Ramsey P., Martin M., Felgner P.L. 1994. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J. Biol. Chem. 269, 2550–2561.

    Article  CAS  PubMed  Google Scholar 

  29. Lichtenberg D., Freire E., Schmidt C.F., Barenholz Y., Felgner P.L., Thompson T.E. 1981. Effect of surface curvature on stability, thermodynamic behavior, and osmotic activity of dipalmitoylphosphatidylcholine single lamellar vesicles. Biochemistry. 20, 3462–3467.

    Article  CAS  PubMed  Google Scholar 

  30. Lichtenberg D., Felgner P., Thompson T. 1982. Transition of a liquid crystalline phosphatidylcholine bilayer to the gel phase in a vesicle reduces the internal aqueous volume. Biochim. Biophys. Acta. Biomembranes. 684, 277–281.

    Article  CAS  Google Scholar 

  31. Fletcher S., Ahmad A., Perouzel E., Heron A., Miller A.D., Jorgensen M.R. 2006. In vivo studies of dialkynoyl analogues of DOTAP demonstrate improved gene transfer efficiency of cationic liposomes in mouse lung. J. Med. Chem. 49, 349–357.

    Article  CAS  PubMed  Google Scholar 

  32. Obata Y., Suzuki D., Takeoka S. 2008. Evaluation of cationic assemblies constructed with amino acid-based lipids for plasmid DNA delivery. Bioconjugate Chem. 19, 1055–1063.

    Article  CAS  Google Scholar 

  33. Floch V., Bolc’h G. Le, Audrezet M.P., Yaouanc J.J., Clément J.C., Abbayes H., Mercier B., Abgrall J.F., Férec C. 1997. Cationic phosphonolipids as non-viral vectors for DNA transfection in hematopoietic cell lines and CD34+ cells. Blood Cell. Mol. Dis. 23, 69–87.

    Article  CAS  Google Scholar 

  34. Nantz M.H., Dicus C.W., Hilliard B., Yellayi S., Zou S., Hecker J.G. 2010. The benefit of hydrophobic domain asymmetry on the efficacy of transfection as measured by in vivo imaging. Mol. Pharm. 7, 786–794.

    Article  CAS  PubMed  Google Scholar 

  35. Dharmalingam P., Rachamalla H.K.R., Lohchania B., Bandlamudi B., Thangavel S., Murugesan M.K., Banerjee R., Chaudhuri A., Chandrashekhar Voshavar, Marepally S. 2017. Green transfection: Cationic lipid nanocarrier system derivatized from vegetable fat, palmstearin enhances nucleic acid transfections. ACS Omega. 2, 7892–7903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bhattacharya S., Bajaj A. 2009. Advances in gene delivery through molecular design of cationic lipids. Chem. Commun. 31, 4632–4656.

    Article  CAS  Google Scholar 

  37. Shi N., Pardridge W.M. 2000. Noninvasive gene targeting to the brain. Proc. Natl. Acad. Sci. USA. 97, 7567–7572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sarker S.R., Takeoka S. 2018. Amino acid-based liposomal assemblies: Intracellular plasmid DNA delivery nanoparticles. J. Nanomed. 2, 1008–1021.

    Google Scholar 

  39. Ghosh Y.K., Visweswariah S.S., Bhattacharya S. 2002. Advantage of the ether linkage between the positive charge and the cholesteryl skeleton in cholesterol-based amphiphiles as vectors for gene delivery. Bioconjugate Chem. 13, 378–384.

    Article  CAS  Google Scholar 

  40. Ghosh Y.K., Visweswariah S.S., Bhattacharya S. 2000.Nature of linkage between the cationic headgroup and cholesteryl skeleton controls gene transfection efficiency. FEBS letters. 473, 341–344.

    Article  CAS  PubMed  Google Scholar 

  41. Kim H.S., Song I.H., Kim J.C., Jang D.O., Park Y.S. 2006. In vitro and in vivo gene-transferring characteristics of novel cationic lipids, DMKD (O,O'-dimyristyl-N-lysyl aspartate) and DMKE (O,O'-dimyristyl-N-lysyl glutamate). J. Contr. Release. 115, 234–241.

    Article  CAS  Google Scholar 

  42. Rajesh M., Sen J., Srujan M., Mukherjee K., Sreedhar B., Chaudhuri A. 2007. Dramatic influence of the orientation of linker between hydrophilic and hydrophobic lipid moiety in liposomal gene delivery. J. Amer. Chem. Society. 129, 11 408–11 420.

    Article  CAS  Google Scholar 

  43. Zhi D., Bai Y., Yang J., Cui S., Zhao Y., Chen H., Zhang S. 2018. A review on cationic lipids with different linkers for gene delivery. Adv. Colloid Interface Sci. 253, 117–140.

    Article  CAS  PubMed  Google Scholar 

  44. Bajaj A., Kondaiah P., Bhattacharya S. 2008. Effect of the nature of the spacer on gene transfer efficacies of novel thiocholesterol derived gemini lipids in different cell lines: A structure–activity investigation. J. Med. Chem. 51, 2533–2540.

    Article  CAS  PubMed  Google Scholar 

  45. Bhattacharya S. 1999. Vesicle formation from dimeric ion-paired amphiphiles. Control over vesicular thermotropic and ion-transport properties as a function of intra-amphiphilic headgroup separation. Langmuir. 15, 3400–3410.

    Article  CAS  Google Scholar 

  46. Bhattacharya S., Bajaj A. 2007. Membrane-forming properties of gemini lipids possessing aromatic backbone between the hydrocarbon chains and the cationic headgroup. J. Phys. Chem. B. 111, 13 511–13 519.

    Article  CAS  Google Scholar 

  47. Sarker S.R., Aoshima Y., Hokama R., Inoue T., Sou K., Takeoka S. 2013. Arginine-based cationic liposomes for efficient in vitro plasmid DNA delivery with low cytotoxicity. Int. J. Nanomed. 8, 1361–1375.

    Article  CAS  Google Scholar 

  48. Colomer A., Pinazo A., García M.T., Mitjans M., Vinardell M.P., Infante M.R., Martínez V., Pérez L. 2012. pH-Sensitive surfactants from lysine: Assessment of their cytotoxicity and environmental behavior. Langmuir. 28, 5900–5912.

    Article  CAS  PubMed  Google Scholar 

  49. Mezei A., Pérez L., Pinazo A., Comelles F., Infante M.R., Pons R. 2012. Self assembly of pH-sensitive cationic lysine based surfactants. Langmuir. 28, 16761–16771.

    Article  CAS  PubMed  Google Scholar 

  50. Castro M., Griffiths D., Patel A., Pattrick N., Kitson C., Ladlow M. 2004. Effect of chain length on transfection properties of spermine-based gemini surfactants. Org. Biomol. Chem. 2, 2814–2820.

    Article  CAS  PubMed  Google Scholar 

  51. Karlsson L., van Eijk M.C.P., Söderman O. 2002. Compaction of DNA by gemini surfactants: Effects of surfactant architecture. J. Colloid Interface Sci. 252, 290–296.

    Article  CAS  PubMed  Google Scholar 

  52. Wettig S.D., Badea I., Donkuru M., Verrall R.E., Foldvari M. 2007. Structural and transfection properties of amine-substituted gemini surfactant-based nanoparticles. J. Gene Med. 9, 649–658.

    Article  CAS  PubMed  Google Scholar 

  53. Vigneron J.P., Oudrhiri N., Fauquet M., Vergely L., Bradley J.C., Basseville M., Lehn P., Lehn J.M. 1996. Guanidinium-cholesterol cationic lipids: Efficient vectors for the transfection of eukaryotic cells. Proc. Natl. Acad. Sci. USA. 93, 9682–9686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sen J., Chaudhuri A. 2005. Design, syntheses, and transfection biology of novel non-cholesterol-based guanidinylated cationic lipids. J. Med. Chem. 48, 812–820.

    Article  CAS  PubMed  Google Scholar 

  55. Nakase I., Takeuchi T., Tanaka G., Futaki S. 2008. Methodological and cellular aspects that govern the internalization mechanisms of arginine-rich cell-penetrating peptides. Adv. Drug Delivery Rev. 60, 598–607.

    Article  CAS  Google Scholar 

  56. Loseva A.A., Budanova U.A., Sebyakin Yu.L. 2019. Synthesis of new guanidine-containing amphiphiles and their pyrene analog for liposomal delivery systems and visualization in target cells. Russ. J. Org. Chem. (Rus.). 55 (12), 1826–1831.

    Article  CAS  Google Scholar 

  57. Kumar V.V., Pichon C., Refregiers M., Guerin B., Midoux P., Chaudhuri A. 2003. Single histidine residue in head-group region is sufficient to impart remarkable gene transfection properties to cationic lipids: Evidence for histidine-mediated membrane fusion at acidic pH. Gene Ther. 10, 1206–1215.

    Article  CAS  PubMed  Google Scholar 

  58. Cardoso A.M., Morais C.M., Cruz A.R., Silva S.G., Vale M.L., Marques E.F., Pedroso de Lima M.C., Jurado A.S. 2015. New serine-derived gemini surfactants as gene delivery systems. Eur. J. Pharm. Biopharm. 89, 347–356.

    Article  CAS  PubMed  Google Scholar 

  59. Gujrati M., Malamas A., Shin T., Jin E., Sun L., Lu Z.-R. 2014. Multifunctional cationic lipid-based nanoparticles facilitate endosomal escape and reduction-triggered cytosolic siRNA release. Mol. Pharm. 11, 2734–2744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tang F., Hughes J.A. 1998. Introduction of a disulfide bond into a cationic lipid enhances transgene expression of plasmid DNA. Biochem. Biophys. Res. Commun. 242, 141–145.

    Article  CAS  PubMed  Google Scholar 

  61. Kedika B., Patri S.V. 2012. Synthesis and gene transfer activities of novel serum compatible reducible tocopherol-based cationic lipids. Mol. Pharm. 9, 1146–1162.

    Article  CAS  PubMed  Google Scholar 

  62. Denieva Z.G., Romanova N.A., Bodrova T.G., Budanova U.A., Sebyakin Yu.L. 2019. Synthesis of amphiphilic peptidomimetics based on the aliphatic derivatives of natural amino acids. Moscow University Chem. Bull. 74 (6), 300–305.

    Article  Google Scholar 

  63. Marusova (Soloveva) V.V., Zagitova R.I., Budanova U.A., Sebyakin Yu.L. 2018. Multifunctional lipoamino acid derivatives with potential biological activity. Moscow University Chem. Bull. 73 (2), 74–79.

    Article  Google Scholar 

  64. Katagiri K., Ariga K., Kikuchi J.-I. 1999. Preparation of organic-inorganic hybrid vesicle “cerasome” derived from artificial lipid with alkoxysilyl head. Chem. Lett. 28, 661–662.

    Article  Google Scholar 

  65. Liang X., Gao J., Jiang L., Luo J., Jing L., Li X., Jin Y., Dai Z. 2015. Nanohybrid liposomal cerasomes with good physiological stability and rapid temperature responsiveness for high intensity focused ultrasound triggered local chemotherapy of cancer. ACS Nano. 9, 1280–1293.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang C.Y., Cao Z., Zhu W.J., Liu J. 2014. Highly uniform and stable cerasomal microcapsule with good biocompatibility for drug delivery. Colloids Surface B. 116, 327–333.

    Article  CAS  Google Scholar 

  67. Kikuchi J. 2011. Cerasomes: A new family of artificial cell membranes with ceramic surface. In: Advances in biomimetics. Ed. G.A. Rijeka, InTech, p. 231–250.

    Google Scholar 

  68. Wang Y., Wang B., Song X., Wu H., Wang H., Shen H., Ma X., Tan M. 2015. Liposomal nanohybrid cerasomes for mitochondria-targeted drug delivery. J. Mat. Chem. B. 3, 7291–7299.

    Article  CAS  Google Scholar 

  69. Katagiri K., Hamasaki R., Ariga K., Kikuchi J.-I. 2003. Preparation and surface modification of novel vesicular nano-particle “cerasome” with liposomal bilayer and silicate surface. J. Sol.-Gel. Sci. Technol. 26, 393–396.

    Article  CAS  Google Scholar 

  70. Cheung L.S., Zheng X., Stopa A., Baygents J.C., Guzman R., Schroeder J.A., Heimark R.L., Zohar Y. 2009. Detachment of captured cancer cells under flow acceleration in a bio-functionalized microchannel. Lab. Chip. 9, 1721–1731.

    Article  CAS  PubMed  Google Scholar 

  71. Liu D., Wu Q., Zou S., Bao F., Kikuchi J.-I., Song X.-M. 2020. Surface modification of cerasomes with AuNPs@poly(ionic liquid)s for an enhanced stereo biomimetic membrane electrochemical platform. Bioelectrochem. 132, 107 411.

    Article  CAS  Google Scholar 

  72. Hashizume M., Inoue H., Katagiri K., Ikeda A., Kikuchi J.-I. 2004. Cerasome as an organic-inorganic nanohybrid: Characterization of cerasome-forming lipids having a single or a dual trialkoxysilil head. J. Sol.-Gel. Sci. Technol. 31, 99–102.

    Article  CAS  Google Scholar 

  73. Zhang D., Culver H.R., Bowman C.N. 2019. Hybrid cerasomes composed of phosphatidylcholines and silica networks for the construction of vesicular materials with functionalized shells. ACS Applied Nano Mater. 2 (12), 7549–7558.

    Article  CAS  Google Scholar 

  74. Katagiri K., Hashizume M., Ariga K., Terashima T., Kikuchi J.-I. 2007. Preparation and characterization of a novel organic-inorganic nanohybrid “cerasome” formed with a liposomal membrane and silicate surface. Chem. Eur. J. 13, 5272–5281.

    Article  CAS  PubMed  Google Scholar 

  75. Tahara K., Moriuchi T., Tsukui M., Hirota A., Maeno T., Toriyama M., Inagaki N., Kikuchi J.-I. 2013. Ceramic coating of liposomal gene carrier for minimizing toxicity to primary hippocampal neurons. Chem. Lett. 42, 1265–1267.

    Article  CAS  Google Scholar 

  76. Denieva Z.G., Budanova U.A., Sebyakin Yu.L. 2019. Synthesis asymmetric lipid-like organosilanes for liposomal nanohybrid cerasomes toward potential medical applications. Mendeleev Commun. 29, 32–34.

    Article  CAS  Google Scholar 

  77. Sarychev G.A., Mironova M.S., Budanova U.A., Sebyakin Yu.L. 2017. Design, synthesis and morphology of the organosiloxane hybrid particles based on L-aspartic acid derivatives. Mendeleev Commun. 27, 155–156.

    Article  CAS  Google Scholar 

  78. Denieva Z.G., Budanova U.A., Sebyakin Y.L. 2019. Liposomal hybrid silicon-organic means of delivery of medicinal preparations. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. (Rus.). 62 (5), 14–23.

    Article  CAS  Google Scholar 

  79. Karimi M., Ghasemi A., Zangabad P.S., Rahighi R., S. Basri M.M., Mirshekari H., Amiri M., Pishabad Z.S., Aslani A., Bozorgomid M., Ghosh D., Beyzavi A., Vaseghi A., Aref A.R., Haghani L., Bahrami S., Hamblin M.R. 2016. Smart micro/nanoparticles in stimulus responsive drug/gene delivery systems. Chem. Soc. Rev. 45, 1457–1501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Xiao W., Zeng X., Lin H., Han K., Jia H.-Z., Zhang X.-Z. 2015. Dual stimuli-responsive multi-drug delivery system for the individually controlled release of anti-cancer drugs. Chem. Commun. 51, 1475–1478.

    Article  CAS  Google Scholar 

  81. Manigandan A., Handi V., Sundaramoorthy N.S, Dhandapani R., Radhakrishnan J., Sethuraman S., Subramanian A. 2017. Responsive nanomicellar theranostic cages for metastatic breast cancer. Bioconjugate Chem. 29, 275–286.

    Article  CAS  Google Scholar 

  82. Panchenko P.A., Grin M.A., Fedorova O.A., Zakharko M.A., Pritmov D.A., Mironov A.F., Arkhipova A.N., Fedorov Y.V., Jonusauskas G., Yakubov-skaya R.I., Morozova N.B., Ignatova A.A., Feofanov A.V. 2017. A novel bacteriochlorin–styrylnaphthalimide conjugate for simultaneous photodynamic therapy and fluorescence imaging. Phys. Chem. Chem. Phys. 19, 30 195–30 206.

    Article  Google Scholar 

  83. Liang X., Li X., Yue X., Dai Z. 2011. Conjugation of porphyrin to nanohybrid cerasomes for photodynamic diagnosis and therapy of cancer. Angew. Chem. Int. Ed. Engl. 50, 11 622–11 627.

    Article  CAS  Google Scholar 

  84. Li S., Jiang J., Zhu S., Yan Y., Huang G., He D. 2017. Progress of liposomal nanohybrid cerasomes as novel drug nanocarriers. Gen. Chem. 3 (4), 194–201.

    Article  Google Scholar 

  85. Bhattarai P., Liang X., Xu Y., Dai Z. 2017. A novel cyanine and porphyrin based theranostic nanoagent for near-infrared fluorescence imaging guided synergistic phototherapy. J. Biomed. Nanotechnol. 13, 1468–1479.

    Article  CAS  PubMed  Google Scholar 

  86. Elzoghby A.O., Hemasa A.L., Freag M.S. 2016. Hybrid protein-inorganic nanoparticles: From tumor-targeted drug delivery to cancer imaging. J. Control. Release. 243, 303–322.

    Article  CAS  PubMed  Google Scholar 

  87. Sharapaev A.I., Muradova A.G., Yurtov E.V. 2012. Preperation of magnetic nanoparticles based on magnetite and pharmaceutically acceptable polymers for MRI diagnostics. Usp. Khim. Khim. Tekhnol. (Rus.). 26 (7), 97–100.

    Google Scholar 

  88. Cao Z., Zhu W., Wang W., Zhang C., Xu M., Liu J., Feng S.-T., Jiang Q., Xie X. 2014. Stable cerasomes for simultaneous drug delivery and magnetic resonance imaging. Int. J. Nanomed. 9, 5103–5116.

    Article  CAS  Google Scholar 

  89. Mo R., Sun Q., Li N., Zhang C. 2013. Intracellular delivery and antitumor effects of pH-sensitive liposomes based on zwitterionic oligopeptide lipids. Biomaterials. 34 (11), 2773–2786.

    Article  CAS  PubMed  Google Scholar 

  90. Xia G., An Z.Y. Wang Y., Zhao C., Li M., Li Z.; Ma J. 2013. Synthesis of a novel polymeric material folate-poly(2-ethyl-2-oxazoline)-distearoyl phosphatidyl ethanolamine tri-block polymer for dual receptor and pH‑sensitive targeting liposome. Chem. Pharm. Bull. 61 (4), 390–398.

    Article  CAS  Google Scholar 

  91. Drummond D. C., Zignani M., Leroux J. 2000. Current status of pH-sensitive liposomes in drug delivery. Prog. Lipid Res. 39 (5), 409–460.

    Article  CAS  PubMed  Google Scholar 

  92. Karanth H., Murthy R. 2007. pH-sensitive liposomes-principle and application in cancer therapy. J. Pharm. Pharmacol. 59 (4), 469–483.

    Article  CAS  PubMed  Google Scholar 

  93. Ferreira D.S., Lopes S.C., Franco M.S., Oliveira M.C. 2013. pH-sensitive liposomes for drug delivery in cancer treatment. Ther. Deliv. 4 (9), 1099–1123.

    Article  CAS  Google Scholar 

  94. Seki K., Tirrell D.A. 1984. pH-dependent complexation of poly(acrylic acid) derivatives with phospholipid vesicle membranes. Macromolecules. 17 (9), 1692–1698.

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 19-04-00775).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. G. Denieva.

Ethics declarations

The authors declare that they have no conflict of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denieva, Z.G., Budanova, U.A. & Sebyakin, Y.L. Vesicle Delivery Systems of Biologically Active Compounds: From Liposomes to Cerasomes. Biochem. Moscow Suppl. Ser. A 15, 21–35 (2021). https://doi.org/10.1134/S1990747820050049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747820050049

Keywords:

Navigation