Skip to main content
Log in

Cellular automata-based digital image scrambling under JPEG compression attack

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

This article has been updated

Abstract

Communication and storage technologies have greatly advanced in recent years, providing ever increased bandwidths and storage capacities respectively. But, efficient utilization of resources like network bandwidth and data storage is relevant even today. More and more data are generated every unit of time and this enormous data is sent over networks and stored in local and/or cloud storage devices. Compression techniques are used to compress or reduce the size of data so as to make efficient use of these resources. Compression techniques are basically of two types; lossless compression used by applications that require integrity of the data is preserved and lossy compression used by applications in which subtle changes in data either go unnoticed or does not affect the semantics of information. In this paper, we analyze the effect of JPEG lossy compression on scrambled images and propose a cellular automata-based method to recover the quality of de-scrambled images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Dursun, G., Özer, F., Özkaya, U.: A new and secure digital image scrambling algorithm based on 2D cellular automata. Turk. J. Electr. Eng. Comput. Sci. 25, 3515–3527 (2017)

    Article  Google Scholar 

  2. Huffman, D.: A method for the construction of minimum-redundancy codes. Proc. IRE 40(9), 1098–1101 (1952)

    Article  MATH  Google Scholar 

  3. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 23(3), 337–343 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 24(5), 530–536 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Saloman, D., Motta, G.: Handbook of Data Compression. Springer Science & Business Media, New York (2010)

    Book  Google Scholar 

  6. Kocher, M., Kunt, M.: Image data compression by contour texture modelling. Appl. Digit. Image Process. V 397, 132–140 (1983)

    Google Scholar 

  7. Yan, C., Li, Z., Zhang, Y., Liu, Y., Ji, X., Zhang, Y.: Depth image denoising using nuclear norm and learning graph model. ACM Trans. Multimed. Comput. Commun. Appl. 16(4), 1–17 (2020)

    Article  Google Scholar 

  8. Yan, C., Shao, B., Zhao, H., Ning, R., Zhang, Y., Xu, F.: 3D room layout estimation from a single RGB image. IEEE Trans. Multimed. 22(11), 3014–3024 (2020)

    Article  Google Scholar 

  9. Gao, R., Grauman, K.: On-demand learning for deep image restoration. In: 2017 IEEE International Conference on Computer Vision (ICCV) 2017. https://doi.org/10.1109/iccv.2017.124

  10. Chen, R., Mihaylova, L., Zhu, H., Bouaynaya, N.C.: A deep learning framework for joint image restoration and recognition. Circuits Syst. Signal Process. 39, 1561–1580 (2020)

    Article  Google Scholar 

  11. Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M., Aila, T.: Noise2noise: Learning image restoration without clean data. arXiv preprint arXiv:1803.04189. 2018 Mar 12

  12. Yan, C., Gong, B., Wei, Y., Gao, Y.: Deep multi-view enhancement hashing for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. (2020). https://doi.org/10.1109/tpami.2020.2975798

    Article  Google Scholar 

  13. Jeelani, Z., Qadir, F.: Cellular automata-based approach for digital image scrambling. Int. J. Intell. Comput. Cybern. 11(3), 353–370 (2018)

    Article  Google Scholar 

  14. Dalhoum, A.L.A., Mahafzah, B.A., Awwad, A.A., Aldhamari, I., Ortega, A., Alfonseca, M.: Digital image scrambling using 2D cellular automata. IEEE Multimed. 19, 28–36 (2012)

    Article  Google Scholar 

  15. Jeelani, Z., Qadir, F.: A comparative study of cellular automata-based digital image scrambling techniques. Evol. Syst. (2020). https://doi.org/10.1007/s12530-020-09326-5

    Article  Google Scholar 

  16. Manzoni, L.: Asynchronous cellular automata and dynamical properties. Nat. Comput. 11(2), 269–276 (2012). https://doi.org/10.1007/s11047-012-9308-y

    Article  MathSciNet  MATH  Google Scholar 

  17. Da, D.C., Chen, J.H., Cui, X.Y., Li, G.Y.: Design of materials using hybrid cellular automata. Struct. Multidiscip. Optim. 56(1), 131–137 (2017)

    Article  MathSciNet  Google Scholar 

  18. Goles, E., Martinez, S.: Automata Networks. Neural and Automata Networks, pp. 15–37. Springer, Dordrecht (1990)

    MATH  Google Scholar 

  19. Hernandez, G., Herrmann, H.J.: Cellular automata for elementary image enhancement. Graph. Models Image Process. 58(1), 82–89 (1996)

    Article  Google Scholar 

  20. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Pearson Education, New Jersey (2008)

    Google Scholar 

  21. Rosenfeld, A., Kak, A.: Digital Picture Processing. Academic Press, San Diego (1981)

    MATH  Google Scholar 

  22. Jeelani, Z.: Digital image encryption based on chaotic cellular automata. Int. J. Comput. Vis. Image Process. 10(4), 29–42 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fasel Qadir.

Additional information

Communicated by C. Yan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeelani, Z., Qadir, F. & Gani, G. Cellular automata-based digital image scrambling under JPEG compression attack. Multimedia Systems 27, 1025–1034 (2021). https://doi.org/10.1007/s00530-021-00759-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-021-00759-9

Keywords

Navigation