Skip to main content
Log in

On Entropy Production of Repeated Quantum Measurements II. Examples

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We illustrate the mathematical theory of entropy production in repeated quantum measurement processes developed in a previous work by studying examples of quantum instruments displaying various interesting phenomena and singularities. We emphasize the role of the thermodynamic formalism, and give many examples of quantum instruments whose resulting probability measures on the space of infinite sequences of outcomes (shift space) do not have the (weak) Gibbs property. We also discuss physically relevant examples where the entropy production rate satisfies a large deviation principle but fails to obey the central limit theorem and the fluctuation–dissipation theorem. Throughout the analysis, we explore the connections with other, a priori unrelated topics like functions of Markov chains, hidden Markov models, matrix products and number theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Many additional examples are considered in [13].

  2. A density matrix \(\rho \) is a non-negative operator whose trace satisfies \({{\text {tr}}}(\rho )=1\).

  3. Such an instantaneous direct measurement is, of course, an idealization, most real measurements are indirect and require some finite time to complete (see [41] for a concrete study).

  4. See [70, Section V.3]. In modern parlance, this follows from the operator-convexity of the function \(x\mapsto x\log x\), see, e.g., [29].

  5. For an integer T, \({{\mathcal {A}}}^T\) denotes the T-fold cartesian product of the set \({{\mathcal {A}}}\) with itself.

  6. \({{\mathbb {N}}}\) denotes the set of natural integers including 0, and \({{\mathbb {N}}}^*\mathrel {\mathop :}={{\mathbb {N}}}\setminus \{0\}\). \({{\mathcal {A}}}^{{{\mathbb {N}}}^*}\) is the set of sequences \(\omega =(\omega _1,\omega _2,\ldots )\).

  7. For any integers \( i\le j\) we set \([\![i,j]\!]=[i,j]\cap {{\mathbb {Z}}}\).

  8. By convention, the cylinder with empty base is \(\Omega \).

  9. see [2] for a general introduction to this topic.

  10. \(\sigma _T\) is often called the log-likelihood ratio in the framework of hypothesis testing, and relative information random variable in information theory.

  11. A sufficient condition for ergodicity is that the completely positive map \(\Phi =\sum _{a\in {{\mathcal {A}}}}\Phi _a\) is irreducible.

  12. \(\partial ^{\mp }\) denotes the left/right derivative.

  13. \(\text {int}(S)/\text {cl}(S)\) denotes the interior/closure of the set S.

  14. We recall that I is a rate function if it is non-negative, lower semicontinuous, and not everywhere infinite. We call I a good rate function if, in addition, it has compact level sets.

  15. Note that the formula given in [21] is different, but coincides with this one since \(e(\alpha ) = e(1-\alpha )\). The expression given here is convenient in view of the generalizations we discuss at the end of this section.

  16. There are pairs of instruments such that \((\Omega ,{\mathbb {P}},\phi )\) is ergodic and \(\text {ep}({\mathbb {P}},{\widehat{{\mathbb {P}}}})=0\), yet \({\mathbb {P}}\ne {\widehat{{\mathbb {P}}}}\) and \(\text {ep}({\widehat{{\mathbb {P}}}},{\mathbb {P}})>0\), even when \({\text {supp}}\,{\mathbb {P}}_T = {\text {supp}}\,{\widehat{{\mathbb {P}}}}_T\) for all \(T\in {{\mathbb {N}}}^*\). This happens for example if \({\mathbb {P}}\), \({\mathbb {Q}}\) are two distinct, fully supported ergodic measures, and \({\widehat{{\mathbb {P}}}}= \frac{1}{2} {\mathbb {P}}+ \frac{1}{2} {\mathbb {Q}}\).

  17. \({{\text {tr}}}_{{{\mathcal {H}}}_p}\) denotes the partial trace over \({{\mathcal {H}}}_p\).

  18. \((P_l)_{l\in {{{\mathcal {L}}}}}\) is the family of eigenprojections of an observable commuting with \(\rho _p\), not necessarily the ones of \(\rho _p\) itself. In particular, we do not assume the projections \(P_l\) to be rank one.

  19. All the entropic notions we use are reviewed in [21, Section 2.1]. We recall that \(S(\mu _1|\mu _2)\ge 0\) and that the equality holds iff \(\mu _1=\mu _2\).

  20. Note that if \({\mathbb {Q}}\) is the unraveling of some quantum instrument, then this definition is consistent with the notation introduced in Sect. 1.2.

  21. We denote the transpose of an arbitrary matrix A, by \(A^{\mathsf {T}}\).

  22. M is called irreducible whenever, for any index pair ij, there is a power \(M^n\) with non-vanishing ij entry.

  23. \(m_{xy}(a) = p_{xy}\delta _{ya}\) is an equally valid choice.

  24. We use the convention \(0/0=0\).

  25. We mention here that the link between HM and matrix products was used in [53] for the study of the Kolmogorov–Sinai entropy.

  26. In this context, see also Remark 4.7.

  27. Here and below, \(\Rightarrow \) denotes convergence in law.

  28. For PMP unravelings \(e(\alpha ) <\infty \) for all \(\alpha \in {{\mathbb {R}}}\).

  29. Recall that \(n_{ab} = n_{ab}(\xi )\).

  30. Here \(\lambda \cdot X\) denotes the Euclidean inner product on \({{\mathbb {R}}}^3\).

  31. We note that (3.20) does not follow from (3.12) and (3.19) alone. Some estimate on the speed of convergence is required.

  32. \(f^*\) denotes the Legendre transform of f.

  33. Note that, since the third component of \(\nabla Q(0)\) vanishes, we cannot get rid of the absolute value of \(W_T\) in the same way.

  34. The symmetry (3.32) allows to conveniently estimate \(\overline{J}^{(\varepsilon )}\) in terms of \(\text {ep}^{(\varepsilon )}\), but its role is not fundamental. One can, in principle, also obtain (3.34) by writing \(J_T^{(\varepsilon )}\) in terms of the vector \(X_T\) introduced in Sect. 3.3 and then using the LDP that it obeys (with respect to \({\mathbb {P}}^{(\varepsilon )}\)).

  35. Recall our convention \({\text {sign}}(0)=1\).

  36. Note that \(|a_{\pm }|^2+2b_{\pm }^2=1\).

  37. This case only happens when \(b_-=b_+=0\).

  38. We recall the convention chosen in Sect. 1.2 about \({{\mathbb {N}}}\) (which includes 0) and \({{\mathbb {N}}}^*\) (which does not).

  39. Note that (A.8) does not hold for \(i=0\) in general, because we may have \(q_1 = q_0=1\) (for example if \(\zeta = \pi /4\)) and so Lemma A.1 may not apply to all pairs \((p, q_i)\), \(p \ne p_i\).

References

  1. Aharonov, Y., Bergmann, P.G., Lebowitz, J.L.: Time symmetry in the quantum process of measurement. Phys. Rev. 134, B1410 (1964)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Barreira, L.: Thermodynamic Formalism and Applications to Dimension Theory. Birkhäuser, Basel (2011)

    Book  MATH  Google Scholar 

  3. Barchielli, A., Belavkin, V.P.: Measurements continuous in time and a posteriori states in quantum mechanics. J. Phys. A 24, 1495–1514 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  4. Bauer, M., Bernard, D.: Convergence of repeated quantum nondemolition measurements and wave-function collapse. Phys. Rev. A 84, 044103 (2011)

    Article  ADS  Google Scholar 

  5. Bougron, J.-F., Bruneau, L.: Linear response theory and entropic fluctuations in repeated interaction quantum systems. J. Stat. Phys. 181, 1636–1677 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  6. Bauer, M., Benoist, T., Bernard, D.: Repeated quantum non-demolition measurements: convergence and continuous time limit. Ann. H. Poincaré 14, 639–679 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ballesteros, M., Benoist, T., Fraas, M., Fröhlich, J.: The appearance of particle tracks in detectors. arXiv preprint (2020). arXiv:2007.00785

  8. Bauer, M., Bernard, D., Tilloy, A.: Computing the rates of measurement-induced quantum jumps. J. Phys. A 48, 25FT02 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bauer, M., Bernard, D., Tilloy, A.: Zooming in on quantum trajectories. J. Phys. A 49, 10LT01 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bernardin, C., Chetrite, R., Chhaibi, R., Najnudel, J., Pellegrini, C.: Spiking and collapsing in large noise limits of SDEs. arXiv preprint (2018). arXiv:1810.05629

  11. Ballesteros, M., Crawford, N., Fraas, M., Fröhlich, J., Schubnel, B.: Non-demolition measurements of observables with general spectra. Mathematical Problems in Quantum PhysicsMath. Probl. Quantum Phys. 717, 241–256 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ballesteros, M., Crawford, N., Fraas, M., Fröhlich, J., Schubnel, B.: Perturbation theory for weak measurements in quantum mechanics, systems with finite-dimensional state space. Ann. H. Poincaré 20, 299–335 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Benoist, T., Cuneo, N., Jakobson, D., Jakšić, V., Pillet, C.-A.: Statistical mechanics of repeated quantum measurement processes. In preparation

  14. Benoist, T., Cuneo, N., Jakšić, V., Pautrat, Y., Pillet, C.-A.: On the nature of the quantum detailed balance condition. In preparation

  15. Belavkin, V.P.: A new wave equation for a continuous nondemolition measurement. Phys. Lett. A 140, 355–358 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  16. Ballesteros, M., Fraas, M., Fröhlich, J., Schubnel, B.: Indirect acquisition of information in quantum mechanics. J. Stat. Phys. 162, 924–958 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Benoist, T., Fraas, M., Pautrat, Y., Pellegrini, C.: Invariant measure for quantum trajectories. Probab. Theory Relat. Fields 174, 307–334 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Barchielli, A., Gregoratti, M.: Quantum Trajectories and Measurements in Continuous Time: The Diffusive Case. Springer Science, New York (2009)

    Book  MATH  Google Scholar 

  19. Barchielli, A., Holevo, A.S.: Constructing quantum measurement processes via classical stochastic calculus. Stoch. Process. Appl. 58, 293–317 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bruneau, L., Joye, A., Merkli, M.: Repeated interactions in open quantum systems. J. Math. Phys. 55, 075204 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. Benoist, T., Jakšić, V., Pautrat, Y., Pillet, C.-A.: On entropy production of repeated quantum measurements I. General theory. Commun. Math. Phys. 357, 77–123 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. Blackwell, D.: The entropy of functions of finite state Markov chains. In Transactions of the first Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, Publishing House of the Czechoslovak Academy of Sciences, pp. 13–20 (1957)

  23. Bohm, D.: Quantum Theory. Prentice Hall, New York (1951)

    MATH  Google Scholar 

  24. Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Stat. 37, 1554–1563 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bryc, W.: A remark on the connection between the large deviation principle and the central limit theorem. Stat. Prob. Lett. 18, 253–256 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Burger, E.B.: Exploring the Number Jungle: A Journey into Diophantine Analysis. Student Mathematical Library, vol. 8, Providence, RI: American Mathematical Society (AMS) (2000)

  27. Berghout, S., Verbitskiy, E.: On regularity of functions of Markov chains. arXiv preprint (2021). arXiv:2101.00608

  28. Bouten, L., Van Handel, R., James, M.R.: An introduction to quantum filtering. SIAM J. Control Optim. 46, 2199–2241 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Carlen, E.: Trace inequalities and quantum entropy: an introductory course. In: Ueltschi, D., Sims, R. (eds.) Entropy and the Quantum, pp. 73–140. AMS, Providence, RI (2010)

    Chapter  MATH  Google Scholar 

  30. Cuneo, N., Jakšić, V., Pillet, C.-A., Shirikyan, A.: Large deviations and fluctuation theorem for selectively decoupled measures on shift spaces. Rev. Math. Phys. 31, 1950036 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Comman, H.: Strengthened large deviations for rational maps and full shifts, with unified proof. Nonlinearity 22, 1413–1429 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. Crooks, G.E.: Quantum operation time reversal. Phys. Rev. A 77, 034101 (2008)

    Article  ADS  Google Scholar 

  33. Cohen-Tannoudji, C., Diu, B., Laloe, F.: Quantum Mechanics I. Hermann, Wiley, Paris, New York (1977)

    MATH  Google Scholar 

  34. Cuneo, N.: Additive, almost additive and asymptotically additive potential sequences are equivalent. Commun. Math. Phys. 377, 2579–2595 (2020)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. Davies, E.B.: Quantum Theory of Open Systems. Academic Press, Cambridge (1976)

    MATH  Google Scholar 

  36. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Springer, New York (1998)

    Book  MATH  Google Scholar 

  37. Evans, D.E., Høegh-Krohn, R.: Spectral properties of positive maps on C*-algebras. J. Lond. Math. Soc. 2, 345–355 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ellis, R.S.: Entropy, Large Deviations and Statistical Mechanics Grundlehren der mathematischen Wissenschaften, vol. 271. Springer, Berlin (1985)

    Book  Google Scholar 

  39. Ephraim, Y., Merhav, N.: Hidden Markov processes. IEEE Trans. Inf. Theory 48, 1518–1569 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Feng, D.-J.: Lyapunov exponents for products of matrices and multifractal analysis. Part II: General matrices. Isr. J. Math. 170, 355–394 (2009)

    Article  MATH  Google Scholar 

  41. Fraas, M., Graf, G.M., Hänggli, L.: Indirect measurements of a harmonic oscillator. Ann. H. Poincaré 20, 2937–2970 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. Feng, D.-J., Lau, K.-S.: The pressure function for products of non-negative matrices. Math. Res. Lett. 9, 363–378 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Fannes, M., Nachtergaele, B., Slegers, L.: Functions of Markov processes and algebraic measures. Rev. Math. Phys. 4, 39–64 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  44. Haroche, S.: Nobel lecture: controlling photons in a box and exploring the quantum to classical boundary. Rev. Mod. Phys. 85, 1083–1102 (2013)

    Article  ADS  Google Scholar 

  45. Hanson, E.P., Joye, A., Pautrat, Y., Raquépas, R.: Landauer’s principle in repeated interaction systems. Commun. Math. Phys. 349, 285–327 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  46. Hanson, E.P., Joye, A., Pautrat, Y., Raquépas, R.: Landauer’s principle for trajectories of repeated interaction systems. Ann. H. Poincaré 19, 1939–1991 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Holevo, A.S.: Statistical Structure of Quantum Theory, vol. 67. Springer Science & Business Media, Berlin (2003)

    Google Scholar 

  48. Haroche, S., Raimond, J.-M.: Exploring the Quantum: Atoms, Cavities, and Photons. Oxford Graduate Texts. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  49. Jakšić, V., Ogata, Y., Pautrat, Y., Pillet, C.-A.: Entropic fluctuations in quantum statistical mechanics: an introduction. In: Fröhlich, J., Salmhofer, M., Mastropietro, V., de Roeck, W., Cugliandolo, L. (eds.) Quantum Theory from Small to Large Scales. Oxford University Press, Oxford (2012)

    MATH  Google Scholar 

  50. Jakšić, V., Ogata, Y., Pillet, C.-A., Seiringer, R.: Quantum hypothesis testing and non-equilibrium statistical mechanics. Rev. Math. Phys. 24, 1230002 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Jakšić, V., Pillet, C.-A., Rey-Bellet, L.: Entropic fluctuations in statistical mechanics: I. Classical dynamical systems. Nonlinearity 24, 699–763 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  52. Jakšić, V., Pillet, C.-A., Westrich, M.: Entropic fluctuations of quantum dynamical semigroups. J. Stat. Phys. 154, 153–187 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  53. Jacquet, P., Seroussi, G., Szpankowski, W.: On the entropy of a hidden Markov process. Theor. Comput. Sci. 395, 203–219 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer-Verlag, Berlin (1995)

    Book  Google Scholar 

  55. Khinchin, A.: Continued Fractions. University of Chicago Press, Chicago (1964)

    MATH  Google Scholar 

  56. Kümmerer, B., Maassen, H.: A pathwise ergodic theorem for quantum trajectories. J. Phys. A 37, 11889 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  57. Kraus, K.: States, Effects, and Operations: Fundamental Notions of Quantum Theory. Lecture Notes in Physics, vol. 190. Springer-Verlag, Berlin Heidelberg (1983)

    Book  MATH  Google Scholar 

  58. Lebowitz, J.L.: Macroscopic laws, microscopic dynamics, time’s arrow and Boltzmann’s entropy. Physica A 194, 1–27 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  59. Lörinczi, J., Maes, C., Vande Velde, K.: Transformations of Gibbs measures. ProbabProbabProbab. Theory Relat. Fields 112, 121–147 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  60. Messiah, A.: Quantum Mechanics II. North-Holland, Amsterdam (1962)

    MATH  Google Scholar 

  61. Maassen, H., Kümmerer, B.: Purification of quantum trajectories. In: IMS Lecture Notes Monography Series, vol. 48. Inst. Math. Statist., Beachwood, OH pp. 252–261 (2006)

  62. Marcus, B., Petersen, K., Weissman, T. (eds.): Entropy of Hidden Markov Processes and Connections to Dynamical Systems: Papers from the Banff International Research Station Workshop. London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge (2011)

  63. Ozawa, M.: Quantum measuring processes of continuous observables. J. Math. Phys. 25, 79–87 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  64. Pfister, C.-E., Sullivan, W.G.: Weak Gibbs measures and large deviations. Nonlinearity 31, 49–53 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  65. Ruelle, D.: Thermodynamic Formalism. The Mathematical Structure of Equilibrium Statistical Mechanics. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  66. Takesaki, M.: Theory of Operator Algebras I. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  67. van Enter, A.C.D., Fernández, R., Sokal, A.D.: Regularity properties and pathologies of position-space renormalization-group transformations: scope and limitations of Gibbsian theory. J. Stat. Phys. 72, 879–1167 (1993)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  68. Verbitskiy, E.: Thermodynamic of hidden Markov processes. In Entropy of Hidden Markov Processes and Connections to Dynamical Systems: Papers from the Banff International Research Station Workshop (Marcus, B., Petersen, K. and Weissman, T., eds.), London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, pp. 258–272 (2011)

  69. Verbitskiy, E.: Thermodynamics of the binary symmetric channel. Pac. J. Math. Ind. 8, 2 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  70. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton, NJ (1955)

    MATH  Google Scholar 

  71. Walters, P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics. Graduate Texts in MathematicsGraduate Texts in MathematicsGraduate Texts in MathematicsGraduate Texts in Mathematics, vol. 79. Springer, Berlin (1982)

    Book  Google Scholar 

  72. Walters, P.: Relative pressure, relative equilibrium states, compensation function and many-to-one codes between subshifts. Trans. AMS 296, 1–31 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  73. Wigner, E.P.: The problem of measurement. Am. J. Phys. 31, 6–15 (1963)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  74. Wineland, D.J.: Nobel lecture: superposition, entanglement, and raising Schrödinger’s cat. Rev. Mod. Phys. 85, 1103–1114 (2013)

    Article  ADS  Google Scholar 

  75. Yuri, M.: Weak Gibbs measures and the local product structure. Ergod. Theory Dyn. Syst. 22, 1933–1955 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the Agence Nationale de la Recherche through the grant NONSTOPS (ANR-17-CE40-0006-01, ANR-17-CE40-0006-02, ANR-17-CE40-0006-03), and the CNRS collaboration grant Fluctuation theorems in stochastic systems. Additionally, this work received funding by the CY Initiative of Excellence (grant “Investissements d’Avenir” ANR-16-IDEX-0008) and was developed during VJ’s stay at the CY Advanced Studies, whose support is gratefully acknowledged. The research of TB was supported by ANR-11-LABX-0040-CIMI within the program ANR-11-IDEX-0002-02. NC and TB were also supported by the ANR grant QTRAJ (ANR-20-CE40-0024-01). VJ acknowledges the support of NSERC. The work of CAP has been carried out in the framework of the Labex Archimède (ANR-11-LABX-0033) and of the A*MIDEX project (ANR-11-IDEX-0001-02), funded by the “Investissements d’Avenir” French Government programme managed by the French National Research Agency (ANR). We wish to thank D. Roy and D. Jakobson for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C -A. Pillet.

Additional information

Communicated by Bruno Nachtergaele.

Dedicated to Joel Lebowitz on the occasion of his 90th birthday

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Continued Fractions

Appendix A Continued Fractions

In this appendix we prove Lemma A.2, which was used in the last section. To this end, we start with a brief summary of some properties of continued fractions (see for example [26, 55] for more details).

Let \((a_n)_{n\in {{\mathbb {N}}}}\subset {{\mathbb {Z}}}\) be such that \(a_n\in {{\mathbb {N}}}^*\) for all \(n\in {{\mathbb {N}}}^*\).Footnote 38 Define

$$\begin{aligned} {[}a_0; a_1]\mathrel {\mathop :}=a_0 + \frac{1}{a_1} , \quad [a_0; a_1,a_2] = a_0 + \frac{1}{a_1 + \frac{1}{a_2}}, \end{aligned}$$

and, more generally, for \(i\in {{\mathbb {N}}}^*\),

$$\begin{aligned} {[}a_0; a_1, \dots , a_i]\mathrel {\mathop :}=a_0 + \dfrac{1}{a_1 + \dfrac{1}{a_2 + \dfrac{1}{\begin{array}{c} \displaystyle a_3+\\ \big . \end{array} ~ \ddots ~ \dfrac{1}{a_{i-1} + \dfrac{1}{a_i}}}}}. \end{aligned}$$

It is well known that the limit

$$\begin{aligned} {[}a_0;a_1, a_2, \dots ]\mathrel {\mathop :}=\lim _{i\rightarrow \infty } [a_0; a_1, \dots , a_i] \end{aligned}$$

exists and is irrational. There is a bijection between the sequences \((a_n)_{n\in {{\mathbb {N}}}}\) such that \(a_n\in {{\mathbb {N}}}^*\) for all \(n\in {{\mathbb {N}}}^*\) and the irrational numbers. Moreover, for each \(\zeta \in {{\mathbb {R}}}\setminus {{\mathbb {Q}}}\), we have

$$\begin{aligned} \zeta =[a_0;a_1, a_2, \dots ], \end{aligned}$$
(A.1)

where

$$\begin{aligned} \zeta _0&\mathrel {\mathop :}=\zeta ,&\qquad a_0&\mathrel {\mathop :}=\lfloor \zeta _0 \rfloor ,\\ \zeta _{i+1}&\mathrel {\mathop :}=\frac{1}{\zeta _i-a_i},&\qquad a_{i+1}&\mathrel {\mathop :}=\lfloor \zeta _{i+1} \rfloor , \qquad i\in {{\mathbb {N}}}. \end{aligned}$$

The right-hand side of (A.1) is called the continued fraction expansion of \(\zeta \), and this expansion is unique.

For \(i\in {{\mathbb {N}}}^*\), let \(p_i \in {{\mathbb {Z}}}\) and \(q_i \in {{\mathbb {N}}}^*\) be such that the fraction

$$\begin{aligned} \frac{p_i}{q_i} = [a_0; a_1, \dots , a_i] \end{aligned}$$
(A.2)

is irreducible, and let \(p_{-1} \mathrel {\mathop :}=1\), \(q_{-1} \mathrel {\mathop :}=0\), \(p_0 \mathrel {\mathop :}=a_0\) and \(q_0 \mathrel {\mathop :}=1\). We then have for \(i\in {{\mathbb {N}}}^*\),

$$\begin{aligned} \begin{bmatrix} p_i &{} p_{i-1}\\ q_i &{} q_{i-1} \end{bmatrix}&= \begin{bmatrix} p_{i-1} &{} p_{i-2}\\ q_{i-1} &{} q_{i-2} \end{bmatrix} \begin{bmatrix} a_i &{} 1 \\ 1&{} 0 \end{bmatrix}, \end{aligned}$$
(A.3)

and, in particular, \(q_{i+1} > q_i\). It is also well known that if \(\zeta \) is given by (A.1) (so that \(\zeta = \lim _{i\rightarrow \infty } \frac{p_i}{q_i}\)), then

$$\begin{aligned} \frac{p_{0}}{q_{0}}< \frac{p_{2}}{q_{2}}< \frac{p_{4}}{q_{4}}< \dots< \zeta< \dots< \frac{p_{5}}{q_{5}}<\frac{p_{3}}{q_{3}}< \frac{p_{1}}{q_{1}}, \end{aligned}$$
(A.4)

and

$$\begin{aligned} \frac{1}{2 q_{i+1}}\le \left| {q_i}\zeta - {p_i}\right| \le \frac{1}{q_{i+1}}, \qquad i\in {{\mathbb {N}}}. \end{aligned}$$
(A.5)

We recall here the best approximation property (see for example [26, Theorem 5.9]).

Lemma A.1

Fix \(i\in {{\mathbb {N}}}\), and let \((p,q)\in ({{\mathbb {Z}}}\times [\![1, q_{i+1}]\!]) \setminus \{(p_{i}, q_{i}), (p_{i+1}, q_{i+1})\}\). Then

$$\begin{aligned} |\zeta q - p| > |\zeta q_{i}-p_{i}| . \end{aligned}$$
(A.6)

Proof

Let \(x,y \in {{\mathbb {Z}}}\) be such that

$$\begin{aligned} \begin{bmatrix} p_{i+1} &{} p_{i}\\ q_{i+1}&{} q_{i} \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} p\\ q \end{bmatrix}. \end{aligned}$$

Such \(x,y\in {{\mathbb {Z}}}\) exist, as the determinant of the matrix here is \({\pm } 1\) by (A.3). We consider two cases.

First, if \(x=0\) then \((p,q) = (yp_i, yq_i)\). Clearly \(y>0\), since \(q, q_i > 0\), and in fact the condition \((p,q) \ne (p_i, q_i)\) implies that \(y \ge 2\). The result is then obvious, since then \(|\zeta q - p| \ge 2|\zeta q_{i}-p_{i}|\).

We now assume that \(x\ne 0\). The condition

$$\begin{aligned} q=xq_{i+1}+yq_{i}\in [\![1, q_{i+1}]\!]\end{aligned}$$
(A.7)

implies that \(xy<0\). Indeed, clearly (A.7) implies that \(xy\le 0\), and if we had \(y=0\), then by (A.7) we would find \(x=1\), which contradicts the condition \((p,q)\ne (p_{i+1}, q_{i+1})\). This shows that \(xy<0\).

Since also \((\zeta q_{i+1}-p_{i+1})(\zeta q_{i}-p_{i}) < 0\) by (A.4), we conclude that \(x(\zeta q_{i+1}-p_{i+1})\) and \(y(\zeta q_{i}-p_{i})\) have the same sign. But then,

$$\begin{aligned} |\zeta q - p|&= |x(\zeta q_{i+1}-p_{i+1})+y(\zeta q_{i}-p_{i})| \\&= |x||\zeta q_{i+1}-p_{i+1}|+|y||\zeta q_{i}-p_{i}| > |\zeta q_{i}-p_{i}|, \end{aligned}$$

which completes the proof. \(\square \)

Let \(\ell (x)\mathrel {\mathop :}=\min _{p\in {{\mathbb {Z}}}} |x-p|\) as in Sect. 5. Let \(i\in {{\mathbb {N}}}^*\). Since \(q_{i+1}>q_i\), Lemma A.1 applies to the pairs \((p, q_i)\) for all \(p \ne p_i\), from which we conclude thatFootnote 39

$$\begin{aligned} \ell (\zeta q_i) =|\zeta q_i - {p_{i}}|. \end{aligned}$$
(A.8)

In addition, for all \(i\in {{\mathbb {N}}}\), applying Lemma A.1 to all pairs \((p,q)\in ({{\mathbb {Z}}}\times [\![1, q_{i+1}-1]\!])\setminus \{(p_i, q_i)\}\) shows that

$$\begin{aligned} \ell (\zeta q)\ge \left| \zeta q_i - {p_{i}}\right| , \qquad q\in [\![1, q_{i+1}-1]\!]. \end{aligned}$$
(A.9)

Lemma A.2

Let \(\psi :{{\mathbb {N}}}^*\rightarrow {]}0,1]\) be a decreasing function such that \(\sup _{q\in {{\mathbb {N}}}^*}q\psi (q)<\infty \). Then, there exists a dense subset \(U\subset {{\mathbb {R}}}\) such that for all \(\zeta \in U\),

$$\begin{aligned} 0<\liminf _{q\rightarrow \infty }\frac{\ell (q\zeta )}{\psi (q)}<\infty . \end{aligned}$$
(A.10)

Proof

Fix any open interval \(I \subset {{\mathbb {R}}}\) and fix \(x \in I\setminus {{\mathbb {Q}}}\). Let \(({\widehat{a}}_i)_{i\in {{\mathbb {N}}}}\) be such that \(x=[{\widehat{a}}_0; {\widehat{a}}_1, {\widehat{a}}_2, \dots ]\), and let \({\widehat{p}}_i, {\widehat{q}}_i\) be as in (A.2) with \((a_i)\) replaced by \(({\widehat{a}}_i)\). Then, since \(x = \lim _{i\rightarrow \infty }\frac{\widehat{p}_i}{{\widehat{q}}_i}\), one can choose N large enough so that \(\frac{{\widehat{p}}_{N-1}}{{\widehat{q}}_{N-1}} \in I\) and \(\frac{\widehat{p}_N}{{\widehat{q}}_N} \in I\). We then consider \(\zeta = [a_0; a_1, a_2, \dots ]\), where \(a_i = {\widehat{a}}_i\) for \(i\le N\), and \(a_{i+1}=\min \{n\in {{\mathbb {N}}}\mid nq_i\psi (q_i)\ge 1\}\) for \(i\ge N\). Then, since \(p_i ={\widehat{p}}_i\) and \(q_i ={\widehat{q}}_i\) for \(i\le N\), and by (A.4), we obtain that \(\zeta \in I\). It remains to show that \(\zeta \) satisfies (A.10). For all \(i\ge N\), we have by (A.8), (A.5) and (A.3) that

$$\begin{aligned} \ell (\zeta q_i) = \left| \zeta q_i - {p_{i}}\right| \le \frac{1}{q_{i+1}} \le \frac{1}{a_{i+1}q_i} \le \psi (q_i), \end{aligned}$$

so that the second inequality in (A.10) holds. Moreover, by (A.9), (A.5) and (A.3), we have for all \(i\ge N\) and all \(q\in [\![q_i, q_{i+1}-1]\!]\) that

$$\begin{aligned} \ell (\zeta q)&\ge \left| \zeta q_i - {p_{i}}\right| \ge \frac{1}{2 q_{i+1}} \ge \frac{1}{2(a_{i+1}+1)q_i} \ge \frac{1}{2(\frac{1}{q_i\psi (q_i)}+2)q_i}\\&= \frac{\psi (q_i)}{2(1+2 q_i \psi (q_i))} \ge C^{-1} \psi (q_i) \ge C^{-1} \psi (q), \end{aligned}$$

where \(C = 2(1+2 \sup _{q\in {{\mathbb {N}}}}q\psi (q))\). This establishes the first inequality in (A.10), hence the proof is complete. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benoist, T., Cuneo, N., Jakšić, V. et al. On Entropy Production of Repeated Quantum Measurements II. Examples. J Stat Phys 182, 44 (2021). https://doi.org/10.1007/s10955-021-02725-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02725-1

Keywords

Navigation