Skip to main content
Log in

Oxygen Isotope Composition in Olivine and Melts from Cumulates of the Yoko-Dovyren Layered Massif, Northern Transbaikalia, Russia

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

Oxygen isotope composition was studied in 33 monomineralic fractions of olivine from plagioclase lherzolite, dunite, troctolite, and olivine gabbronorite of the Yoko-Dovyren layered massif. The δ18O values of the least altered rocks not contaminated with crustal materials range within 5.8 ± 0.2‰ (n = 27). These values for the dunite contaminated with carbonate material are notably higher and average at 6.2 ± 0.3‰. This is similar to characteristics of the Bushveld and Jinchuan mineralized complexes. Using the COMAGMAT-5 model, the temperatures of equilibrium of 98% crystals with late portions of the residual melts were evaluated at 1131–1266°C (1176 ± 34°C on average). These estimates are viewed as the closing temperatures of the cumulate systems with respect to the efficient exchange of 18O and 16O isotopes between olivine and mobile melt/fluid. For the uncontaminated systems, the δ18O values of the parental melt calculated using the modeled temperatures are 6.6 ± 0.2‰, and are 7.1 ± 0.3 ‰ for melts with signatures of crustal contamination. Such relations are consistent with insignificant (no more than a few percent) contamination of the parental magmas with carbonate materials from the host rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. The LOI values were corrected by the formula (Lechler and Desilets, 1987) LOI* = LOI (original) + 0.11FeO, where the original value corresponds to the analytical values, and FeO is the total Fe concentration in the rock. It is therewith assumed that the oxidized Fe fraction in cumulates (particularly in an adcumulus rock) is low, and Fe2+ is completely oxidized in the process of annealing.

REFERENCES

  1. Yu. V. Amelin, L. A. Neymark, E. Yu. Ritsk, and A. A. Nemchin, “Enriched Nd–Sr–Pb isotopic signatures in the Dovyren layered intrusion (eastern Siberia, Russia): evidence for contamination by ancient upper–crustal material,” Chem. Geol. 129, 39–69 (1996).

    Article  Google Scholar 

  2. A. A. Ariskin and G. S. Barmina, “COMAGMAT: development of a magma crystallization model and its petrologic applications,” Geochem. Int. 42, S1–S157 (2004).

    Google Scholar 

  3. A. A. Ariskin, Yu. A. Kostitsyn, E. G. Konnikov, L. V. Danyushevsky, S. Meffre, G. S. Nikolaev, A. McNeill, E. V. Kislov, and D. A. Orsoev, “Geochronology of the Dovyren intrusive complex, Northwestern Baikal area, Russia, in the Neoproterozoic,” Geochem. Int. 51 (11), 859–875 (2013).

    Article  Google Scholar 

  4. A. A. Ariskin, L. V. Danyushevsky, E. G. Konnikov, R. Maas, Yu. A. Kostitsyn, E. McNeill, S. Meffre, G. S. Nikolaev, and E. V. Kislov, “The Dovyren intrusive coplex (northern Baikal region, Russia): isotope–geochemical markers of contamination of parental magmas and extreme enrichment of the source,” Russ. Geol. Geophys. 56 (3), 411–434 (2015).

    Article  Google Scholar 

  5. A. A. Ariskin, E. V. Kislov, L. V. Danyushevsky, G. S. Nikolaev, M. L. Fiorentini, S. Gilbert, K. Goemann, and A. Malyshev, “Cu–Ni–PGE fertility of the Yoko–Dovyren layered massif (Northern Transbaikalia, Russia): thermodynamic modeling of sulfide compositions in low mineralized dunite based on quantitative sulfide mineralogy,” Mineral. Deposita 51, 993–1011 (2016).

    Article  Google Scholar 

  6. A. A. Ariskin, I. S. Fomin, E. V. Zharkova, A. A. Kadik, and G. S. Nikolaev, “Redox conditions during crystallization of ultramafic and gabbroic rocks of the Yoko–Dovyren Massif (based on the results of measurements of intrinsic oxygen fugacity of olivine),” Geochem. Int. 55 (7), 595–607 (2017).

    Article  Google Scholar 

  7. A. A. Ariskin, K. A. Bychkov, G. S. Nikolaev, and G. S. Barmina, “The COMAGMAT-5: Modeling the effect of Fe–Ni sulfide immiscibility in crystallizing magmas and cumulates,” J. Petrol. 59, 283–298 (2018).

    Article  Google Scholar 

  8. A. Ariskin, L. G. Danyushevsky, Nikolaev, E. Kislov, M. Fiorentini, A. McNeill, Yu. Kostitsyn, K. Goemann, S. Feig, and A. Malyshev, “The Dovyren Intrusive Complex (Southern Siberia, Russia): Insights into dynamics of an open magma chamber with implications for parental magma origin, composition, and Cu–Ni–PGE fertility,” Lithos 302, 242–262 (2018).

    Article  Google Scholar 

  9. A. A. Ariskin, L. V. Danyushevsky, M. Fiorentinin, G. S. Nikolaev, E. V. Kislov, I. V. Pshenitsyn, V. O. Yapaskurt, and S. N. Sobolev, “Petrology, geochemistry, and origin of sulfide–bearing and PGE–mineralized troctolites from the Konnikov zone in the Yoko–Dovyren layered intrusion,” Russ. Geol. Geophys. 62 (5–6), 611–633 (2020).

    Article  Google Scholar 

  10. V. P. Bushuev and R. S. Tarasov, The Kholodninskoe Sulfide–Base Metal Deposit. Report of the Kholodninskaya GRP for 1975–84 (Buryatgeologiya, Ulan–Ude, 1984) [in Russian].

    Google Scholar 

  11. T. Chacko and P. Deines, “Theoretical calculation of oxygen isotope fractionation factors in carbonate systems,” Geochim. Cosmochim. Acta. 72, 3642–3660 (2008).

    Article  Google Scholar 

  12. C. I. Chalokwu, E. M. Ripley, and Y.-R. Park “Oxygen isotopic systematics of an open–system magma chamber: An example from the Freetown Layered Complex of Sierra Leone,” Geochim. Cosmochim. Acta 63 (5), 675–685 (1999).

    Article  Google Scholar 

  13. R. N. Clayton and T. K. Mayeda, “The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis,” Geochim. Cosmochim. Acta 27, 43–52 (1963).

    Article  Google Scholar 

  14. T. Di Rocco, C. Freda, M. Gaeta, S. Mollo, and L. Dallai “Magma chambers emplaced in carbonate substrate: petrogenesis of skarn and cumulate rocks and implications for CO2 degassing in volcanic areas,” J. Petrol. 53, 2307–2332 (2012).

    Article  Google Scholar 

  15. F. Di Stefano, S. Mollo, P. Scarlato, M. Nazzari, O. Bachmann, and M. Caruso, “Olivine compositional changes in primitive magmatic skarn environments: A reassessment of divalent cation partitioning models to quantify the effect of carbonate assimilation,” Lithos. 316–317, 104–121 (2018).

    Article  Google Scholar 

  16. V. V. Distler and A. G. Stepin, “Low-sulfide PGE–bearing horizon of the Yoko–Dovyren layered ultramafic–mafic intrusion, Northern Baikal area,” Dokl. Akad. Nauk 328 (4), 498–501 (1993).

    Google Scholar 

  17. H. W. Eales and G. Costin “Crustally contaminated komatiite: primary source of the chromitites and Marginal, Lower, and Critical Zone magmas in a staging chamber beneath the Bushveld Complex,” Econ. Geol. 107, 645–665 (2012).

    Article  Google Scholar 

  18. R. E. Ernst, M. A. Hamilton, U. Söderlund, J. A. Hanes, D. P. Gladkochub, A. V. Okrugin, T. Kolotilina, A. S. Mekhonoshin, W. Bleeker, A. N. LeCheminant, K. L. Buchan, K. R. Chamberlain, and A. N. Didenko, “Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic,” Nature Geosci. 9, 464–469 (2016).

    Article  Google Scholar 

  19. M. Gaeta, T. Di Rocco, and C. Freda, “Carbonate assimilation in open magmatic systems; the role of melt–bearing skarns and cumulate-forming processes,” J. Petrol. 50, 361–385 (2009).

    Article  Google Scholar 

  20. A. I. Goncharenko, I. F. Gertner, and Yu. A. Fomin, “Evolution of oxygen isotope composition in olivines from the Yoko–Dovyren Pluton,” Geol. Geofiz. 12, 63–71 (1992).

    Google Scholar 

  21. T. Günther, K. M. Haase, M. Junge, T. Oberthür, D. Woelki, and S. Krumm, “Oxygen isotope and trace element compositions of platiniferous dunite pipes of the Bushveld Complex, South Africa – signals from a recycled mantle component?” Lithos. 310–311, 332–341 (2018).

    Article  Google Scholar 

  22. S. A. Gurulev, Geology and Conditions of Formation of the Yoko–Dovyren Gabbro–Peridotite Massif (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  23. C. Harris, J. J. M. Pronost, L. Ashwal, and R. G. Cawthorn, “Oxygen and hydrogen isotope stratigraphy of the Rustenburg Layered Suite, Bushveld Complex: constraints on crustal contamination,” J. Petrol. 46, 579–601 (2005).

    Article  Google Scholar 

  24. E. Ito, W. M. White, and C. Gopel, “The O, Sr, and Pb isotope geochemistry of MORB,” Chem. Geol. 62, 157–176 (1987).

    Article  Google Scholar 

  25. R. I. Kalamarides, “Kiglapait geochemistry VI: oxygen isotopes,” Geochim. Cosmochim. Acta 48, 1827–1836 (1984).

    Article  Google Scholar 

  26. E. V. Kislov, Yoko–Dovyren Layered Massif (BNTs SO RAN, Ulan-Ude, 1998) [in Russian].

  27. E. G. Konnikov, Precambrian Differentiated Ultramafic–Mafic Complexes of Transbaikalia (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  28. E. G. Konnikov, W. P. Meurer, S. S. Neruchev, E. M. Prasolov, E. V. Kislov, and D. A. Orsoev, “Fluid regime of platinum group elements (PGE) and gold-bearing reef formation in the Dovyren mafic–ultramafuc layered complex, eastern Siberia, Russia,” Mineral. Deposita 35, 526–532 (2000).

    Article  Google Scholar 

  29. G. S. Krivoplyasov, A. A. Yaroshevsky, V. I. Ustinov, and V. P. Strizhov, “Redistribution of oxygen isotopes during interaction of magmatic systems with host rocks: evidence from the Yoko–Dovyren layered massif, northern Baikal area,” Proc. 9 th All–Union Symposium on Stable Isotopes in Geochemistry (GEOKHI AN SSSR, Moscow, 1982), pp. 134–136.

  30. G. S. Krivoplyasov, A. A. Yaroshevsky, and V. I. Ustinov, “Oxygen isotope composition of rock–forming minerals of some differentiated trap sills and large layered intrusion: evidence from traps of the Norilsk district, Podkamennaya Tunguska River, and Yoko–Dovyren massif),” Proc. 10 th All–Union Symposium on Stable Isotopes in Geochemistry, Moscow, Russia, 1984 (GEOKHI RAS, Moscow, 1984), p. 233 [in Russian].

  31. P. J. Lechler and M. O. Desilets, “A review of the use of loss on ignition as a measurement of total volatiles in whole–rock analysis, Chem. Geol. 63, 341–344 (1987).

    Article  Google Scholar 

  32. I. Lee and E. M. Ripley, “Mineralogic and oxygen isotopic studies of open system magmatic processes in the South Kawishiwi Intrusion, Spruce Road area, Duluth Complex, Minnesota,” J. Petrol. 37, 1437–1461 (1996).

    Article  Google Scholar 

  33. W. D. Maier, S.-J. Barnes, and B. T. Karykowski A chilled margin of komatiite and Mg–rich basaltic andesite in the western Bushveld Complex, South Africa. Contrib. Mineral. Petrol. 171, 1–22 (2016).

    Article  Google Scholar 

  34. S. Mollo, M. Gaeta, C. Freda, T. Di Rocco, V. Misiti, and P. Scarlato, “Carbonate assimilation in magmas: A reappraisal based on experimental petrology,” Lithos 114, 503–514 (2010).

    Article  Google Scholar 

  35. D. A. Orsoev, “Distribution of oxygen isotopes in rocks and minerals from the Critical Zone of the Ioko–Dovyren Pluton,” Geol. Ore Deposits 52, 543–550 (2010).

    Article  Google Scholar 

  36. D. A. Orsoev, “Anorthosites of the low–sulfide platiniferous horizon (Reef I) in the Upper Riphean Yoko–Dovyren Massif (Northern Cisbaikalia): new data on the composition, PGE–Cu–Ni Mineralization, fluid regime, and formation conditions,” Geol. Ore Deposits 61 (4), 306–332 (2019).

    Article  Google Scholar 

  37. D. A. Orsoev, E. V. Kislov, E. G. Konnikov, S. V. Kanakin, and A. B. Kulikova, “Distribution and compositional features of PGE–bearing horizons of the Yoko–Dovyren latered massif, Northern Baikal area,” Dokl. Akad. Nauk 340 (2), 225–228 (1995).

    Google Scholar 

  38. N. N. Pertsev, and L. I. Shabyllin, “Skarn, carbonate, and brucite xenoliths of the Yoko-Dovyren massif,” Contact Processes and Mineralization in the Gabbro–Peridotite Intrusions (Nauka, Moscow, 1979), pp. 85–96 [in Russian]

    Google Scholar 

  39. N. N. Pertsev, E. G. Konnikov, E. V. Kislov, D. A. Orsoev, and A. N. Nekrasov, “Merwinite–Facies magnesian skarns in xenoliths from dunite of the Dovyren layered intrusion,” Petrology 11 (5), 464–475 (2003).

    Google Scholar 

  40. G. V. Polyakov, N. D. Tolstykh, A. S. Mekhonoshin, A. E. Izokh, M. Yu. Podlipskii, D. A. Orsoev, and T. B. Kolotilina, “Ultramafic–mafic igneous complexes of the Precambrian East Siberian metallogenic province (southern framing of the Siberian craton): age, composition, origin, and ore potential,” Russ. Geol. Geophys. 54 (11), 1319–1331 (2013).

    Article  Google Scholar 

  41. E. M. Ripley, A. Sarkar, and C. Li, “Mineralogic and stable isotope studies of hydrothermal alteration at the Jinchuan Ni–Cu deposit, China,” Econ. Geol. 100, 1349–1361 (2005).

    Article  Google Scholar 

  42. E. Yu. Rytsk, V. S. Shalaev, N. G. Rizvanova, R. Sh. Krymskii, A. F. Makeev, and G. V. Rile, “The Olokit Zone of the Baikal fold region: new isotope-geochronological and petrogeochemical data,” Geotectonics 36 (1), 24–35 (2002).

    Google Scholar 

  43. Z. D. Sharp, “A laser-based microanalytical method for the in-situ determination of oxygen isotope ratios of silicates and oxides,” Geochim. Cosmochim. Acta 54, 1353–1357 (1990).

    Article  Google Scholar 

  44. M. J. Spicuzza, J. W. Valley, M. J. Kohn, J. P. Girard, and A. M. Fouillac, “The rapid heating, defocused beam technique: a CO2–laser-based method for highly precise and accurate determination of δ18O values of quartz,” Chem. Geol. 144, 195–203 (1998).

    Article  Google Scholar 

  45. E. M. Spiridonov, “Barium minerals barite and chlorine dominant ferrokinoshitalite \({\text{BaFe}}_{{\text{3}}}^{{{\text{2}} + }}\)[Cl2/Al2Si2O10] in plagioperidotites of the Yoko-Dovyren intrusion, northern Baikal Area: products of epigenetic low–grade metamorphism,” Geochem. Int. 57 (11), 1221–1229 (2019).

    Article  Google Scholar 

  46. A. G. Stepin and A. I. Vlasenko, Results of Prospecting Works within the Yoko–Dovyren and Bezymyanny Mafic–Ultramafic Massifs. Report of the Dovyren Team for 1989–1993 (Buryatgeolkom, Nizhneangarsk, 1994) [in Russian].

  47. Q. Tang, J. Jian Bao, Y. Dang, S. Ke, and Y. Zhao, “Mg–Sr–Nd isotopic constraints on the genesis of the giant Jinchuan Ni–Cu–(PGE) sulfide deposit, NW China,” Earth Planet. Sci. Let. 502, 221–230 (2018).

    Article  Google Scholar 

  48. H. P. Taylor and S. Epstein, “Relation between 18O/16O ratios in coexisting minerals of igneous and metamorphic rocks. I Principles and experimental results,” Geol. Soc. Am. Bull. 73, 461–480 (1962).

    Article  Google Scholar 

  49. H. P. Taylor, Jr. and S. Epstein, “O18/O16 ratios in rocks and coexisting minerals of the Skaergaard intrusion,” J. Petrol. 4, 51–74 (1963).

    Article  Google Scholar 

  50. S. R. Taylor and S. M. McLennan, The Continental Crust: its Composition and Evolution (Blackwell Sci. Pub., Oxford, 1985).

    Google Scholar 

  51. V. I. Ustinov, A. A. Yaroshevksy, V. P. Striglov, and V. F. Sukhverkhov, “Oxygen isotope composition of rock–forming minerals of the Yoko-Dovyren dunite—troctolite–gabbronorite massif, Northern Baikal area,” Proc. 8 th All–Union Symposium on Stable Isotopes in Geochemistry (Moscow, 1980), pp. 56––58.

  52. T. Wenzel, L. P. Baumgartner, G. E. Bruegman, E. G. Konnikov, and E. V. Kislov, “Partial melting and assimilation of dolomitic xenoliths by mafic magma: the Ioko–Dovyren intrusion (North Baikal Region, Russia),” J. Petrol. 43, 2049–2074 (2002).

    Article  Google Scholar 

  53. A. H. Wilson, “A chill sequence to the Bushveld Complex: insight into the first stage of emplacement and implications for the parental magmas,” J. Petrol. 53, 1123–1168 (2012).

    Article  Google Scholar 

  54. M. Zhang, S. L. Kamo, C. Li, P. Hu, and E. M. Ripley, “Precise U–Pb zirconbaddeleyite age of the Jinchuan sulfide ore-bearing ultramafic intrusion, western China,” Mineral. Deposita. 45, 3–9 (2010).

    Article  Google Scholar 

  55. Z. F. Zhao and Y. F. Zheng, “Calculation of oxygen isotope fractionation in magmatic rocks,” Chem. Geol. 193, 59–80 (2003).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank V.B. Polyakov (Institute of Experimental Mineralogy, Russian Academy of Sciences) for valuable comments on the manuscript and O.A. Lukanin (Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences).

Funding

This study was supported by the Russian Science Foundation, project no. 16-17-10129. The oxygen isotope composition of olivine was studied under government-financed research project 0136-2019-0013 for the Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM), Russian Academy of Sciences. Olivine samples for this research were prepared under government-financed research project for the Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKhI), Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ariskin.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ariskin, A.A., Fomin, I.S., Dubinina, E.O. et al. Oxygen Isotope Composition in Olivine and Melts from Cumulates of the Yoko-Dovyren Layered Massif, Northern Transbaikalia, Russia. Geochem. Int. 59, 156–170 (2021). https://doi.org/10.1134/S0016702921020026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702921020026

Keywords:

Navigation