Skip to main content
Log in

Global Solvability of Time-Varying Semilinear Differential-Algebraic Equations, Boundedness and Stability of Their Solutions. I

  • ORDINARY DIFFERENTIAL EQUATIONS
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

For time-varying semilinear differential-algebraic equations, we prove theorems on the existence and uniqueness of global solutions and theorems on Lagrange stability (boundedness of global solutions), dissipativity (ultimate boundedness of solutions), and Lagrange instability (absence of global solutions).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Vlasenko, L.A., Evolyutsionnye modeli s neyavnymi i vyrozhdennymi differentsial’nymi uravneniyami (Evolution Models with Implicit and Degenerate Differential Equations), Dnepropetrovsk: Sist. Tekhnol., 2006.

    Google Scholar 

  2. Chistyakov, V.F. and Shcheglova, A.A., Izbrannye glavy teorii algebro-differentsial’nykh sistem (Selected Chapters of the Theory of Algebraic-Differential Systems), Novosibirsk: Nauka, 2003.

    MATH  Google Scholar 

  3. Lamour, R., März, R., and Tischendorf, C., Differential-Algebraic Equations: A Projector Based Analysis, Heidelberg: Springer, 2013.

    Book  Google Scholar 

  4. Riaza, R., Differential-Algebraic Systems: Analytical Aspects and Circuit Applications, Hackensack, NY: World Scientific, 2008.

    Book  Google Scholar 

  5. Gliklikh, Yu.E., On global in time solutions for differential-algebraic equations, Vestn. Yuzhn.-Ural. Gos. Univ. Ser. Mat. Model. Program., 2014, vol. 7, no. 3, pp. 33–39.

    MATH  Google Scholar 

  6. Baev, A.D., Zubova, S.P., and Uskov, V.I., Solving problems for descriptor equations by the decomposition method, Vestn. Voronezh. Gos. Univ. Ser. Fiz. Mat., 2013, no. 2, pp. 134–140.

  7. Shcheglova, A.A. and Kononov, A.D., Stability of differential-algebraic equations under uncertainty, Differ. Equations, 2018, vol. 54, no. 7, pp. 860–869.

    Article  MathSciNet  Google Scholar 

  8. Filipkovskaya, M.S., Extension of solutions to semilinear differential-algebraic equations and applications to nonlinear radio engineering, Visn. Kharkiv. Nats. Univ. im. V.N. Karazina. Ser. Mat. Model. Inf. Tekhnol. Avtom. Sist. Upr., 2012, vol. 19, no. 1015, pp. 306–319.

    Google Scholar 

  9. Rutkas, A.G. and Filipkovskaya, M.S., Extension of solutions of one class of differential-algebraic equations, Zh. Obchisl. Prikl. Mat., 2013, no. 1(111), pp. 135–145.

  10. Filipkovska, M.S., Lagrange stability of semilinear differential-algebraic equations and application to nonlinear electrical circuits, J. Math. Phys. Anal. Geom., 2018, vol. 14, no. 2, pp. 169–196.

    MathSciNet  MATH  Google Scholar 

  11. Filipkovskaya, M.S., Lagrange stability and instability of irregular semilinear differential-algebraic equations and applications, Ukr. Math. J., 2018, vol. 70, no. 6, pp. 947–979.

    Article  MathSciNet  Google Scholar 

  12. Rutkas, A.G. and Vlasenko, L.A., Existence of solutions of degenerate nonlinear differential operator equations, Nonlinear Oscillations, 2001, vol. 4, no. 2, pp. 252–263.

    MathSciNet  MATH  Google Scholar 

  13. LaSalle, J. and Lefschetz, S., Stability by Liapunov’s direct method with applications, New York: Academic Press, 1961. Translated under the title: Issledovanie ustoichivosti pryamym metodom Lyapunova, Moscow: Mir, 1964.

    MATH  Google Scholar 

  14. Yoshizawa, T., Stability Theory by Liapunov’s Second Method, Tokyo: Math. Soc. Jpn., 1966.

    MATH  Google Scholar 

  15. Krasovskii, N.N., Nekotorye zadachi teorii ustoichivosti dvizheniya (Some Problems of Motion Stability Theory), Moscow: Fizmatgiz, 1959.

    Google Scholar 

  16. Kato, T., Perturbation Theory for Linear Operators, Berlin: Springer-Verlag, 1966.

    Book  Google Scholar 

  17. Daletskii, Yu.L. and Krein, M.G., Ustoichivost’ reshenii differentsial’nykh uravnenii v banakhovom prostranstve (Stability of Solutions to Differential Equations in a Banach Space), Moscow: Nauka, 1970.

    Google Scholar 

  18. Schwartz, L., Analyse mathématique. II , Paris: Hermann, 1967. Translated under the title: Analiz. T. 2 , Moscow: Mir, 1972.

    MATH  Google Scholar 

  19. Kulikov, G.Yu., The numerical solution of the autonomous Cauchy problem with algebraic constraints on the phase variables, Comput. Math. Math. Phys., 1993, vol. 33, no. 4, pp. 477–492.

    MathSciNet  Google Scholar 

  20. Reissig, R., Sansone, G., and Conti, R., Qualitative Theorie nichtlinearer Differentialgleichungen, Roma: Edizioni Cremonese, 1963. Translated under the title: Kachestvennaya teoriya nelineinykh differentsial’nykh uravnenii, Moscow: Nauka, 1974.

    MATH  Google Scholar 

Download references

Funding

This study was supported by the National Academy of Sciences of Ukraine (project “Qualitative, asymptotic, and numerical analysis of various classes of differential equations and dynamical systems, their classification and practical application,” state reg. no. 0119U102376).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Filipkovskaya.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filipkovskaya, M.S. Global Solvability of Time-Varying Semilinear Differential-Algebraic Equations, Boundedness and Stability of Their Solutions. I. Diff Equat 57, 19–40 (2021). https://doi.org/10.1134/S0012266121010031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266121010031

Navigation