Skip to main content

Advertisement

Log in

A criterion for dynamic ductile fracture initiation of tensile mode

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Dynamic behavior of a material is essential in applications such as collision, explosion, ballistic impact, high-speed machining, and metal forming. As impact loadings, as well as accidental or malicious explosions, may impose high loading rates to engineering structures, estimating the dynamic response of a material accurately is crucial. Therefore, an analytical strain rate-dependent criterion on ductile fracture initiation is developed at the continuum scale by further developing the energy balance concept. The criterion is based on continuum modeling of energy release rates, and the critical state is reached when the rate of energy change of fractured and unfractured states becomes equal. The formulation introduces a material length scale and a material property that is a function of strain rate and temperature. The developed ductile fracture criterion is implemented into two example applications, an aluminum alloy and a titanium alloy, whose experimental data are obtained from the open literature. Fracture loci of these alloys at various strain rates and the critical energy release rates as a function of strain rate are determined. The results of the example applications agree well with the experimental results reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A :

Area of the fracture plane

\(A_{1}, A_{2}, A_{3}\) :

Material constants

\(c_\mathrm{{V}}\) :

Specific heat capacity at constant volume

\(\mathrm {C}_\mathrm{{I}}\) :

Specific surface energy density

du :

Plastic work increment per unit volume

dk :

Kinetic energy increment per unit volume

dw :

Mechanical work increment per unit volume (of the unfractured medium)

dW :

Mechanical work increment of the unfractured medium

d\(W^{*}\) :

Mechanical work increment of the fractured medium

d\(\varepsilon _{ij}\) :

Components of (plastic) strain increment tensor (of the unfractured medium)

d\(\varepsilon _\mathrm{{I}}, \hbox {d}\varepsilon _\mathrm{{II}}, \hbox {d}\varepsilon _\mathrm{{III}}\) :

Strain increments of the unfractured medium in principal directions

d\(\varepsilon _\mathrm{{I}}^{*}, \hbox {d}\varepsilon _\mathrm{{II}}^{*}, \hbox {d}\varepsilon _\mathrm{{III}}^{*}\) :

Strain increments of the fractured medium in principal directions

d\(\varepsilon _\mathrm{{eff}}\) :

Equivalent (plastic) strain increment

\(l_{\mathrm{{I}},0}\) :

Characteristic length (relevant to ductile fracture)

\(l_\mathrm{{I}}, l_\mathrm{{II}}, l_\mathrm{{III}}\) :

Current dimensions of the volume element

mn :

Material constants

T :

Actual material temperature

\(T_\mathrm{{melt}}\) :

Melting temperature of the material

\(T_\mathrm{{room}}\) :

Room temperature

\(v_\mathrm{{I}}, v_\mathrm{{II}}, v_\mathrm{{III}}\) :

Components of velocity vector (in principal directions)

\(x_\mathrm{{I}}, x_\mathrm{{II}}, x_\mathrm{{IIII}}\) :

Principal directions

\(\beta \) :

Fraction of the plastic work contributing to temperature increase

\(\varepsilon _{ij}\) :

Components of true strain

\(\dot{\varepsilon _{0}}\) :

Reference strain rate

\(\dot{\varepsilon _\mathrm{{I}}}, \dot{\varepsilon _\mathrm{{II}}}, \dot{\varepsilon _\mathrm{{III}}}\) :

True strain rates in principal directions

\(\varepsilon _\mathrm{{eff}}\) :

Equivalent (plastic) strain

\(\bar{\varepsilon _{f}}\) :

Equivalent (plastic) strain at fracture

\(\lambda \) :

Nonnegative scalar factor

\(\rho \) :

Mass density of the material

\(\sigma _{ij}\) :

Components of true stress tensor

\(\sigma _\mathrm{{I}}, \sigma _\mathrm{{II}}, \sigma _\mathrm{{III}}\) :

Principal stresses of the unfractured medium

\(\sigma _\mathrm{{I}}^{*}, \sigma _\mathrm{{II}}^{*}, \sigma _\mathrm{{III}}^{*}\) :

Principal stresses of the fractured medium

\(\sigma _\mathrm{{eff}}\) :

Equivalent stress

\({\Gamma }_\mathrm{{I}}\) :

Critical effective energy release rate (of tensile mode fracture)

\({\Delta }T\) :

Increase in temperature

References

  1. Amini, M.R., Nemat-Nasser, S.: Micromechanisms of ductile fracturing of DH-36 steel plates under impulsive loads and influence of polyurea reinforcing. Int. J. Fract. 162, 205–217 (2010)

    MATH  Google Scholar 

  2. Anderson, D., Winkler, S., Bardelcik, A., Worswick, M.J.: Influence of stress triaxiality and strain rate on the failure behavior of a dual-phase DP780 steel. Mater. Des. 60, 198–207 (2014)

    Google Scholar 

  3. Andreaus, U., Baragatti, P.: Experimental damage detection of cracked beams by using nonlinear characteristics of forced response. Mech. Syst. Signal Process. 31, 382–404 (2012)

    ADS  Google Scholar 

  4. Andreaus, U., Baragatti, P., Casini, P., Iacoviello, D.: Experimental damage evaluation of open and fatigue cracks of multi-cracked beams by using wavelet transform of static response via image analysis. Struct. Control Health Monit. 24, e1902 (2017)

    Google Scholar 

  5. Asim, U.B., Siddiq, M.A., McMeeking, R.M., Kartal, M.E.: A multiscale constitutive model for metal forming of dual phase titanium alloys by incorporating inherent deformation and failure mechanisms. arXiv preprint arXiv: 2002.04459 (2020)

  6. ASM Handbook Committee: Properties of wrought aluminum and aluminum alloys. ASM Handbook. Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, pp. 62–122. ASM International, Materials Park (2010)

  7. Austin, R.A., McDowell, D.L.: A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates. Int. J. Plast. 27, 1–24 (2011)

    Google Scholar 

  8. Avriel, E., Lovinger, Z., Nemirovsky, R., Rittel, D.: Investigating the strength of materials at very high strain rates using electromagnetically driven expanding cylinders. Mech. Mater. 117, 165–180 (2018)

    Google Scholar 

  9. Bai, Y., Wierzbicki, T.: Application of extended Mohr-Coulomb criterion to ductile fracture. Int. J. Fract. 161, 1–20 (2010)

    MATH  Google Scholar 

  10. Barsoum, I., Faleskog, J.: Rupture mechanisms in combined tension and shear-experiments. Int. J. Solids Struct. 44, 1768–1786 (2007)

    MATH  Google Scholar 

  11. Benzerga, A.A., Leblond, J.B., Needleman, A., Tvergaard, V.: Ductile failure modeling. Int. J. Fract. 201, 29–80 (2016)

    Google Scholar 

  12. Bobbili, R., Madhu, V.: Effect of strain rate and stress triaxiality on tensile behavior of Titanium alloy Ti-10-2-3 at elevated temperatures. Mater. Sci. Eng. A 667, 33–41 (2016)

    Google Scholar 

  13. Bobbili, R., Paman, A., Madhu, V.: High strain rate tensile behavior of Al-4.8Cu-1.2Mg alloy. Mater. Sci. Eng. A 651, 753–762 (2016)

    Google Scholar 

  14. Børvik, T., Dey, S., Clausen, A.H.: Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles. Int. J. Impact Eng. 36, 948–964 (2009)

    Google Scholar 

  15. Børvik, T., Hopperstad, O.S., Berstad, T., Langseth, M.: A computational model of viscoplasticity and ductile damage for impact and penetration. Eur. J. Mech. A/Solids 20, 685–712 (2001)

    MATH  Google Scholar 

  16. Børvik, T., Hopperstad, O.S., Dey, S., Pizzinato, E.V., Langseth, M., Albertini, C.: Strength and ductility of Weldox 460 E steel at high strain rates, elevated temperatures and various stress triaxialities. Eng. Fract. Mech. 72, 1071–1087 (2005)

    Google Scholar 

  17. Boyer, R., Welsch, G., Collings, E.W.: Materials Properties Handbook: Titanium alloys. ASM International, Materials Park (1998)

    Google Scholar 

  18. Carlioz, T., Dormieux, L., Lemarchand, E.: Thermodynamics of crack nucleation. Contin. Mech. Thermodyn. 32, 1515–1531 (2020)

    MathSciNet  ADS  Google Scholar 

  19. Cayless, R.B.C.: Alloy and temper designation systems for aluminum and aluminum alloys. ASM Handbook. Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, pp. 15–28. ASM International, Materials Park (2010)

  20. Charoensuk, K., Panich, S., Uthaisangsuk, V.: Damage initiation and fracture loci for advanced high strength steel sheets taking into account anisotropic behaviour. J. Mater. Process. Technol. 248, 218–235 (2017)

    Google Scholar 

  21. Chen, Y., Clausen, A.H., Hopperstad, O.S., Langseth, M.: Stress-strain behaviour of aluminium alloys at a wide range of strain rates. Int. J. Solids Struct. 46, 3825–3835 (2009)

    MATH  Google Scholar 

  22. Clausen, A.H., Børvik, T., Hopperstad, O.S., Benallal, A.: Flow and fracture characteristics of aluminium alloy AA5083-H116 as function of strain rate, temperature and triaxiality. Mater. Sci. Eng. A 364, 260–272 (2004)

    Google Scholar 

  23. Chiyatan, T., Uthaisangsuk, V.: Mechanical and fracture behavior of high strength steels under high strain rate deformation: experiments and modelling. Mater. Sci. Eng. A 779, 139125 (2020)

    Google Scholar 

  24. De Angelo, M., Spagnuolo, M., D’Annibale, F., Pfaff, A., Hoschke, K., Misra, A., Dupuy, C., Peyre, P., Dirrenberger, J., Pawlikowski, M.: The macroscopic behavior of pantographic sheets depends mainly on their microstructure: experimental evidence and qualitative analysis of damage in metallic specimens. Contin. Mech. Thermodyn. 31(4), 1181–1203 (2019)

    ADS  Google Scholar 

  25. Desai, C.S., Siriwardane, H.J.: Constitutive laws for engineering materials with emphasis on geologic materials. Prentice-Hall, Upper Saddle River (1984)

    MATH  Google Scholar 

  26. Dieter, G.E.: Mechanical Metallurgy. McGraw-Hill, New York (1986)

    Google Scholar 

  27. Dorogoy, A., Rittel, D.: Dynamic large strain characterization of tantalum using shear-compression and shear-tension testing. Mech. Mater. 112, 143–153 (2017)

    Google Scholar 

  28. El-Magd, E., Abouridouane, M.: Characterization, modelling and simulation of deformation and fracture behaviour of the light-weight wrought alloys under high strain rate loading. Int. J. Impact Eng. 32, 741–758 (2006)

    Google Scholar 

  29. Erice, B., Gálvez, F.: A coupled elastoplastic-damage constitutive model with Lode angle dependent failure criterion. Int. J. Solids Struct. 51, 93–110 (2014)

    Google Scholar 

  30. Erice, B., Gálvez, F., Cendón, D.A., Sánchez-Gálvez, V.: Flow and fracture behaviour of FV535 steel at different triaxialities, strain rates and temperatures. Eng. Fract. Mech. 79, 1–17 (2012)

    Google Scholar 

  31. Eringen, A.C.: Mechanics of Continua. Robert E. Krieger Publishing Company, Melbourne (1980)

    MATH  Google Scholar 

  32. Fu, J., Xie, W., Zhou, J., Qi, L.: A method for the simultaneous identification of anisotropic yield and hardening constitutive parameters for sheet metal forming. Int. J. Mech. Sci. 181, 105756 (2020)

    Google Scholar 

  33. Gambirasio, L., Rizzi, E.: On the calibration strategies of the Johnson-Cook strength model: discussion and applications to experimental data. Mater. Sci. Eng. A 610, 370–413 (2014)

    Google Scholar 

  34. Gao, C.Y., Zhang, L.C.: Constitutive modelling of plasticity of fcc metals under extremely high strain rates. Int. J. Plast. 32, 121–133 (2012)

    Google Scholar 

  35. Grimsmo, E.L., Clausen, A.H., Aalberg, A., Langseth, M.: Fillet welds subjected to impact loading: an experimental study. Int. J. Impact Eng. 108, 101–113 (2017)

    Google Scholar 

  36. Grimsmo, E.L., Clausen, A.H., Langseth, M., Aalberg, A.: An experimental study of static and dynamic behaviour of bolted end-plate joints of steel. Int. J. Impact Eng. 85, 132–145 (2015)

    Google Scholar 

  37. Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth: part I-yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1977)

    Google Scholar 

  38. Hahn, G.T., Kanninen, M.F., Rosenfield, A.R.: Fracture toughness of materials. Annu. Rev. Mater. Sci. 2, 381–404 (1972)

    ADS  Google Scholar 

  39. Hahn, G.T., Rosenfield, A.R.: Metallurgical factors affecting fracture toughness of aluminum alloys. Metall. Trans. A 6, 653–668 (1975)

    Google Scholar 

  40. Hancock, J.W., Mackenzie, A.C.: On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. J. Mech. Phys. Solids 24, 147–160 (1976)

    ADS  Google Scholar 

  41. Huang, J., Guo, Y., Qin, D., Zhou, Z., Li, D., Li, Y.: Influence of stress triaxiality on the failure behavior of Ti-6Al-4V alloy under a broad range of strain rates. Theor. Appl. Fract. Mech. 97, 48–61 (2018)

    Google Scholar 

  42. Huh, H., Ahn, K., Lim, J.H., Kim, H.W., Park, L.J.: Evaluation of dynamic hardening models for BCC, FCC, and HCP metals at a wide range of strain rates. J. Mater. Process. Technol. 214, 1326–1340 (2014)

    Google Scholar 

  43. Johnson, GR., Cook, WH.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics, Hague, pp. 541–547 (1983)

  44. Johnson, G.R., Cook, W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21, 31–48 (1985)

    Google Scholar 

  45. Kabirian, F., Khan, A.S., Pandey, A.: Negative to positive strain rate sensitivity in 5xxx series aluminum alloys: Experiment and constitutive modeling. Int. J. Plast. 55, 232–246 (2014)

    Google Scholar 

  46. Kapoor, R., Nemat-Nasser, S.: Determination of temperature rise during high strain rate deformation. Mech. Mater. 27, 1–12 (1998)

    Google Scholar 

  47. Karr, D.G., Akçay, F.A.: A criterion for ductile fracture based on continuum modeling of energy release rates. Int. J. Fract. 197, 201–212 (2016)

    Google Scholar 

  48. Khan, A.S., Liang, R.: Behaviors of three BCC metal over a wide range of strain rates and temperatures: experiments and modeling. Int. J. Plast 15, 1089–1109 (1999)

    MATH  Google Scholar 

  49. Khan, A.S., Liu, H.: A new approach for ductile fracture prediction on Al 2024–T351 alloy. Int. J. Plast. 35, 1–12 (2012a)

    Google Scholar 

  50. Khan, A.S., Liu, H.: Variable strain rate sensitivity in an aluminum alloy: response and constitutive modeling. Int. J. Plast. 36, 1–14 (2012b)

    Google Scholar 

  51. Khan, A.S., Liu, H.: Strain rate and temperature dependent fracture criteria for isotropic and anisotropic metals. Int. J. Plast. 37, 1–15 (2012c)

    Google Scholar 

  52. Khan, A.S., Liu, J., Yoon, J.W., Nambori, R.: Strain rate effect of high purity aluminum single crystals: experiments and simulations. Int. J. Plast. 67, 39–52 (2015)

    Google Scholar 

  53. Kim, J.H., Kim, D., Han, H.N., Barlat, F., Lee, M.G.: Strain rate dependent tensile behavior of advanced high strength steels: Experiment and constitutive modeling. Mater. Sci. Eng. A 559, 222–231 (2013)

    Google Scholar 

  54. Kim, W.J., Kim, H.K., Kim, W.Y., Han, S.W.: Temperature and strain rate effect incorporated failure criteria for sheet forming of magnesium alloys. Mater. Sci. Eng. A 488, 468–474 (2008)

    Google Scholar 

  55. Landau, P., Osovski, S., Venkert, A., Gärtnerová, V., Rittel, D.: The genesis of adiabatic shear bands. Sci. Rep. 6, 37226 (2016)

    ADS  Google Scholar 

  56. Larsson, R., Razanica, S., Josefson, B.L.: Mesh objective continuum damage models for ductile fracture. Int. J. Numer. Methods Eng. 106, 840–860 (2016)

    MathSciNet  MATH  Google Scholar 

  57. Lee, W.S., Lin, C.F., Liu, T.J.: Impact and fracture response of sintered 316L stainless steel subjected to high strain rate loading. Mater. Charact. 58, 363–370 (2007)

    Google Scholar 

  58. Liao, D., Zhu, S.P., Correia, J.A., De Jesus, A.M., Berto, F.: Recent advances on notch effects in metal fatigue: a review. Fatigue Fract. Eng. Mater. Struct. 43, 637–659 (2020)

    Google Scholar 

  59. Liu, Y.J., Sun, Q.: A dynamic ductile fracture model on the effects of pressure, Lode angle and strain rate. Mater. Sci. Eng. A 589, 262–270 (2014)

    Google Scholar 

  60. Longère, P.: Adiabatic shear banding assisted dynamic failure: some modeling issues. Mech. Mater. 116, 49–66 (2018)

    Google Scholar 

  61. Longère, P., Dragon, A.: Dynamic vs. quasi-static shear failure of high strength metallic alloys: experimental issues. Mech. Mater. 80, 203–218 (2015)

    Google Scholar 

  62. Majzoobi, G.H., Mahmoudi, A.H., Moradi, S.: Ductile to brittle failure transition of HSLA-100 steel at high strain rates and subzero temperatures. Eng. Fract. Mech. 158, 179–193 (2016)

    Google Scholar 

  63. Mohr, D., Marcadet, S.J.: Micromechanically-motivated phenomenological Hosford-Coulomb model for predicting ductile fracture initiation at low stress triaxialities. Int. J. Solids Struct. 67, 40–55 (2015)

    Google Scholar 

  64. Molinari, A., Mercier, S., Jacques, N.: Dynamic failure of ductile materials. Procedia IUTAM 10, 201–220 (2014)

    Google Scholar 

  65. Molinari, A., Ravichandran, G.: Constitutive modeling of high-strain-rate deformation in metals based on the evolution of an effective microstructural length. Mech. Mater. 37, 737–752 (2005)

    Google Scholar 

  66. Moody, N.R., Garrison, W.M., Smugeresky, J.E., Costa, J.E.: The role of inclusion and pore content on the fracture toughness of powder-processed blended elemental titanium alloys. Metall. Trans. A 24, 161–174 (1993)

    Google Scholar 

  67. Nahshon, K., Hutchinson, J.W.: Modification of the Gurson model for shear failure. Eur. J. Mech. A/Solids 27, 1–17 (2008)

    ADS  MATH  Google Scholar 

  68. Nguyen, C.T., Oterkus, S., Oterkus, E.: An energy-based peridynamic model for fatigue cracking. Eng. Fract. Mech. 241, 107373 (2020)

    Google Scholar 

  69. Nielsen, K.L., Tvergaard, V.: Ductile shear failure or plug failure of spot welds modelled by modified Gurson model. Eng. Fract. Mech. 77, 1031–1047 (2010)

    Google Scholar 

  70. Osovski, S., Srivastava, A., Ponson, L., Bouchaud, E., Tvergaard, V., Ravi-Chandar, K., Needleman, A.: The effect of loading rate on ductile fracture toughness and fracture surface roughness. J. Mech. Phys. Solids 76, 20–46 (2015)

    MathSciNet  ADS  Google Scholar 

  71. Owen, D.M., Zhuang, S., Rosakis, A.J., Ravichandran, G.: Experimental determination of dynamic crack initiation and propagation fracture toughness in thin aluminum sheets. Int. J. Fract. 90, 153–174 (1998)

    Google Scholar 

  72. Özel, T., Karpat, Y.: Identification of constitutive material model parameters for high-strain rate metal cutting conditions using evolutionary computational algorithms. Mater. Manuf. Process. 22, 659–667 (2007)

    Google Scholar 

  73. Pan, H., Liu, J., Choi, Y., Xu, C., Bai, Y., Atkins, T.: Zones of material separation in simulations of cutting. Int. J. Mech. Sci. 115, 262–279 (2016)

    Google Scholar 

  74. Piao, M., Huh, H., Lee, I., Ahn, K., Kim, H., Park, L.: Characterization of flow stress at ultra-high strain rates by proper extrapolation with Taylor impact tests. Int. J. Impact Eng. 91, 142–157 (2016)

    Google Scholar 

  75. Placidi, L., Barchiesi, E., Misra, A.: A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Math. Mech. Complex Syst. 6, 77–100 (2018a)

    MathSciNet  MATH  Google Scholar 

  76. Placidi, L., Misra, A., Barchiesi, E.: Two-dimensional strain gradient damage modeling: a variational approach. Z. Angew. Math. Phys. 69, 56 (2018b)

    MathSciNet  MATH  Google Scholar 

  77. Placidi, L., Misra, A., Barchiesi, E.: Simulation results for damage with evolving microstructure and growing strain gradient moduli. Contin. Mech. Thermodyn. 31, 1143–1163 (2019)

    MathSciNet  ADS  Google Scholar 

  78. Rittel, D., Weisbrod, G.: Dynamic fracture of tungsten base heavy alloys. Int. J. Fract. 112, 87–98 (2001)

    Google Scholar 

  79. Roth, C.C., Mohr, D.: Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: Experiments and modeling. Int. J. Plast. 56, 19–44 (2014)

    Google Scholar 

  80. Rusinek, A., Rodríguez-Martínez, J.A.: Thermo-viscoplastic constitutive relation for aluminium alloys, modeling of negative strain rate sensitivity and viscous drag effects. Mater. Des. 30, 4377–4390 (2009)

    Google Scholar 

  81. Shahba, A., Ghosh, S.: Crystal plasticity FE modeling of Ti alloys for a range of strain-rates. Part I: a unified constitutive model and flow rule. Int. J. Plast. 87, 48–68 (2016)

    Google Scholar 

  82. Shojaei, A., Voyiadjis, G.Z., Tan, P.J.: Viscoplastic constitutive theory for brittle to ductile damage in polycrystalline materials under dynamic loading. Int. J. Plast. 48, 125–151 (2013)

    Google Scholar 

  83. Siddiq, A.: A porous crystal plasticity constitutive model for ductile deformation and failure in porous single crystals. Int. J. Damage Mech. 28, 233–248 (2019)

    Google Scholar 

  84. Siddiq, A., Arciniega, R., El Sayed, T.: A variational void coalescence model for ductile metals. Comput. Mech. 49, 185–195 (2012)

    MathSciNet  MATH  Google Scholar 

  85. Siddiq, A., Schmauder, S.: Simulation of hardening in high purity niobium single crystals during deformation. Steel Grips J. Steel Relat. Mater. 3, 281–286 (2005)

    Google Scholar 

  86. Sjöberg, T., Kajberg, J., Oldenburg, M.: Fracture behaviour of Alloy 718 at high strain rates, elevated temperatures, and various stress triaxialities. Eng. Fract. Mech. 178, 231–242 (2017)

    Google Scholar 

  87. Smerd, R., Winkler, S., Salisbury, C., Worswick, M., Lloyd, D., Finn, M.: High strain rate tensile testing of automotive aluminum alloy sheet. Int. J. Impact Eng. 32, 541–560 (2005)

    Google Scholar 

  88. Spagnuolo, M., Barcz, K., Pfaff, A., Dell’Isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mech. Res. Commun. 83, 47–52 (2017)

    Google Scholar 

  89. Sung, J.H., Kim, J.H., Wagoner, R.H.: A plastic constitutive equation incorporating strain, strain-rate, and temperature. Int. J. Plast. 26, 1746–1771 (2010)

    MATH  Google Scholar 

  90. Tanimura, S., Tsuda, T., Abe, A., Hayashi, H., Jones, N.: Comparison of rate-dependent constitutive models with experimental data. Int. J. Impact Eng. 69, 104–113 (2014)

    Google Scholar 

  91. Tvergaard, V.: Influence of voids on shear band instabilities under plane strain conditions. Int. J. Fract. 17, 389–407 (1981)

    Google Scholar 

  92. Ulacia, I., Salisbury, C.P., Hurtado, I., Worswick, M.J.: Tensile characterization and constitutive modeling of AZ31B magnesium alloy sheet over wide range of strain rates and temperatures. J. Mater. Process. Technol. 211, 830–839 (2011)

    Google Scholar 

  93. Vaz-Romero, A., Rodríguez-Martínez, J.A., Arias, A.: The deterministic nature of the fracture location in the dynamic tensile testing of steel sheets. Int. J. Impact Eng. 86, 318–335 (2015)

    Google Scholar 

  94. Voyiadjis, G.Z., Abed, F.H.: Effect of dislocation density evolution on the thermomechanical response of metals with different crystal structures at low and high strain rates and temperatures. Arch. Mech. 57, 299–343 (2005a)

    MATH  Google Scholar 

  95. Voyiadjis, G.Z., Abed, F.H.: Microstructural based models for bcc and fcc metals with temperature and strain rate dependency. Mech. Mater. 37, 355–378 (2005b)

    Google Scholar 

  96. Wang, B., Xiao, X., Astakhov, V.P., Liu, Z.: The effects of stress triaxiality and strain rate on the fracture strain of Ti6Al4V. Eng. Fract. Mech. 219, 106627 (2019)

    Google Scholar 

  97. Wierzbicki, T., Bao, Y., Lee, Y.W., Bai, Y.: Calibration and evaluation of seven fracture models. Int. J. Mech. Sci. 47, 719–743 (2005)

    Google Scholar 

  98. Yu, X., Li, L., Li, T., Qin, D., Liu, S., Li, Y.: Improvement on dynamic fracture properties of magnesium alloy AZ31B through equal channel angular pressing. Eng. Fract. Mech. 181, 87–100 (2017)

    Google Scholar 

  99. Yu, T., Hyer, H., Sohn, Y., Bai, Y., Wu, D.: Structure-property relationship in high strength and lightweight AlSi10Mg microlattices fabricated by selective laser melting. Mater. Des. 182, 108062 (2019)

    Google Scholar 

  100. Zener, C., Hollomon, J.H.: Effect of strain rate upon plastic flow of steel. J. Appl. Phys. 15, 22–32 (1944)

    ADS  Google Scholar 

  101. Zerilli, F.J., Armstrong, R.W.: Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys. 61, 1816–1825 (1987)

    ADS  Google Scholar 

  102. Zheng, C., Wang, F., Cheng, X., Liu, J., Fu, K., Liu, T., Zhu, Z., Yang, K., Peng, M., Jin, D.: Failure mechanisms in ballistic performance of Ti-6Al-4V targets having equiaxed and lamellar microstructures. Int. J. Impact Eng. 85, 161–169 (2015)

    Google Scholar 

Download references

Acknowledgements

The first author would like to thank Dr. Osman Darıcı for his kind help to obtain some articles.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuzuli Ağrı Akçay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Marcus Aßmus and Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akçay, F.A., Oterkus, E. A criterion for dynamic ductile fracture initiation of tensile mode. Continuum Mech. Thermodyn. 35, 1087–1101 (2023). https://doi.org/10.1007/s00161-021-00983-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-00983-8

Keywords

Navigation