Skip to main content
Log in

A constitutive model for linear hyperelastic materials with orthotropic inclusions by use of quaternions

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

An approximated theoretical model for linear hyperelastic materials with orthotropic inclusions is presented based on a mixture approach and orientation averaging of mechanical properties. In many modern composites, particle inclusions are used to achieve the desired properties. The properties of the resulting composite depend on the material, inclusion-density and also the shape and orientation of the particles. This paper discusses different methods to describe the orientation of the particles and formulate an orientation density distribution function. In particular, the use of quaternions is compared to Cardan angles for orientation averaging. The proposed approximating material model can be applicable to a composite made of a matrix material that contains biaxial particles or a material that is composed of particles of an orthotropic material. An example for the former could be fiber concrete with hooked-end fibers and an example for the latter could be particle boards, as wood is an orthotropic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altenbach, H., Naumenko, K., L’vov, G., Pilipenko, S.N.: Numerical estimation of the elastic properties of thin-walled structures manufactured from short-fiber-reinforced thermoplastics. Mech. Compos. Mater. 39(3), 221–234 (2003). https://doi.org/10.1023/A:1024566026411

    Article  ADS  Google Scholar 

  2. Ehrentraut, H., Muschik, W.: On symmetric irreducible tensors in d-dimensions. ARI - An Int. J. Phys. Eng. Sci. 51(2), 149–159 (1998). https://doi.org/10.1007/s007770050048

    Article  Google Scholar 

  3. Eik, M., Herrmann, H., Puttonen, J.: Orthotropic constitutive model for steel fibre reinforced concrete: linear-elastic state and bases for the failure. In: Kouhia, R., Mäkinen, J., Pajunen, S., Saksala T. (eds.) Proceedings of the XII Finnish Mechanics Days : [4-5 June 2015, Tampere, Finland], pp. 255–260 (2015)

  4. Eik, M., Lõhmus, K., Tigasson, M., Listak, M., Puttonen, J., Herrmann, H.: DC-conductivity testing combined with photometry for measuring fibre orientations in SFRC. J. Mater. Sci. 48(10), 3745–3759 (2013). https://doi.org/10.1007/s10853-013-7174-3

    Article  ADS  Google Scholar 

  5. Eik, M., Puttonen, J., Herrmann, H.: An orthotropic material model for steel fibre reinforced concrete based on the orientation distribution of fibres. Compos. Struct. 121, 324–336 (2015). https://doi.org/10.1016/j.compstruct.2014.11.018

    Article  Google Scholar 

  6. Eik, M., Puttonen, J., Herrmann, H.: The effect of approximation accuracy of the orientation distribution function on the elastic properties of short fibre reinforced composites. Compos. Struct. 148, 12–18 (2016). https://doi.org/10.1016/j.compstruct.2016.03.046

    Article  Google Scholar 

  7. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Royal Soc. London, Ser. A: Math., Phys. Eng. Sci. 241(1226), 376–396 (1957). https://doi.org/10.1098/rspa.1957.0133

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Goidyk, O., Herrmann, H.: Initial results of local strength analysis of a fiber concrete plate by 4-point bending tests. In: Selected papers of the 13th International Conference “Modern Building Materials, Structures and Techniques”. Vilnius Gediminas Technical University (2019). doi: https://doi.org/10.3846/mbmst.2019.116

  9. Grünewald, S.: Performance-based design of self-compacting fibre reinforced concrete. Ph.D. thesis, Technische Universiteit Delft (2004). http://repository.tudelft.nl/view/ir/uuid:07a817aa-cba1-4c93-bbed-40a5645cf0f1/

  10. Herrmann, H.: Generalized Continua as Models for Classical and Advanced Materials, chap. An Improved Constitutive Model for Short Fibre Reinforced Cementitious Composites (SFRC) Based on the Orientation Tensor, pp. 213–227. Springer International Publishing, Cham (2016). doi: https://doi.org/10.1007/978-3-319-31721-2_10

  11. Herrmann, H., Beddig, M.: Tensor series expansion of a spherical function for use in constitutive theory of materials containing orientable particles. Proc. Estonian Acad. Sci. 67(1), 73–92 (2018). https://doi.org/10.3176/proc.2018.1.04.Open-AccessCC-BY-NC4.0

    Article  MathSciNet  MATH  Google Scholar 

  12. Herrmann, H., Boris, R., Goidyk, O., Braunbrück, A.: Variation of bending strength of fiber reinforced concrete beams due to fiber distribution and orientation and analysis of microstructure. IOP Conf. Ser.: Mater. Sci. Eng. 660, 012059 (2019). https://doi.org/10.1088/1757-899X/660/1/012059

    Article  Google Scholar 

  13. Herrmann, H., Braunbrück, A., Tuisk, T., Goidyk, O., Naar, H.: An initial report on the effect of the fiber orientation on the fracture behavior of steel fiber reinforced self-compacting concrete. In: H. Herrmann, J. Schnell (eds.) Short fiber reinforced cementitious composites and ceramics, pp. 33–50. Springer (2019). doi: https://doi.org/10.1007/978-3-030-00868-0_3

  14. Herrmann, H., Eik, M., Berg, V., Puttonen, J.: Phenomenological and numerical modelling of short fibre reinforced cementitious composites. Meccanica 49(8), 1985–2000 (2014). https://doi.org/10.1007/s11012-014-0001-3

    Article  MathSciNet  MATH  Google Scholar 

  15. Herrmann, H., Goidyk, O., Braunbrück, A.: Influence of the flow of self-compacting steel fiber reinforced concrete on the fiber orientations, a report on work in progress. In: Herrmann, H., Schnell, J., (eds.) Short fiber reinforced cementitious composites and ceramics, pp. 97–110. Springer (2019). doi: https://doi.org/10.1007/978-3-030-00868-0_7

  16. Herrmann, H., Goidyk, O., Naar, H., Tuisk, T., Braunbrück, A.: The influence of fiber orientation in self-compacting concrete on 4-point bending strength. Proc. Estonian Acad. Sci. 68(3), 337–346 (2019). https://doi.org/10.3176/proc.2019.3.12.Open-AccessCC-BY-NC4.0

    Article  Google Scholar 

  17. Herrmann, H., Lees, A.: On the influence of the rheological boundary conditions on the fibre orientations in the production of steel fibre reinforced concrete elements. Proc. Estonian Acad. Sci. 65(4), 408–413 (2016). https://doi.org/10.3176/proc.2016.4.08.Open-AccessCC-BY-NC4.0

    Article  MATH  Google Scholar 

  18. Herrmann, H., Pastorelli, E., Kallonen, A., Suuronen, J.P.: Methods for fibre orientation analysis of x-ray tomography images of steel fibre reinforced concrete (sfrc). J. Mater. Sci. 51(8), 3772–3783 (2016). https://doi.org/10.1007/s10853-015-9695-4

    Article  ADS  Google Scholar 

  19. Herrmann, H., Schnell, J. (eds.): Short Fibre Reinforced Cementitious Composites and Ceramics, Advanced Structured Materials, vol. 95. Springer (2019). doi: https://doi.org/10.1007/978-3-030-00868-0

  20. Hess, S., Köhler, W.: Formeln zur Tensor-Rechnung. Palm & Enke, Erlangen (1980)

    Google Scholar 

  21. Itskov, M.: A generalized orthotropic hyperelastic material model with application to incompressible shells. Int. J. Numer. Meth. Eng. 50(8), 1777–1799 (2001). https://doi.org/10.1002/nme.86

    Article  MATH  Google Scholar 

  22. Itskov, M.: Tensor Algebra and Tensor Analysis for Engineers, 2nd edn. Springer, Berlin (2009)

    Book  Google Scholar 

  23. Itskov, M., Aksel, N.: A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. Int. J. Solids Struct. 41(14), 3833–3848 (2004)

    Article  MathSciNet  Google Scholar 

  24. Laranjeira de Oliveira, F.: Design-oriented constitutive model for steel fiber reinforced concrete. Ph.D. thesis, Universitat Politecnica de Catalunya (2010). http://www.tdx.cat/TDX-0602110-115910

  25. Mishurova, T., Rachmatulin, N., Fontana, P., Oesch, T., Bruno, G., Radi, E., Sevostianov, I.: Evaluation of the probability density of inhomogeneous fiber orientations by computed tomography and its application to the calculation of the effective properties of a fiber-reinforced composite. Int. J. Eng. Sci. 122, 14–29 (2018). https://doi.org/10.1016/j.ijengsci.2017.10.002

    Article  Google Scholar 

  26. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21(5), 571–574 (1973)

    Article  Google Scholar 

  27. Muschik, W., Papenfuss, C., Ehrentraut, H.: Concepts of Continuum Thermodynamics. Kielce University of Technology, Technische Universität Berlin (1996)

  28. Mínguez, J., Gutiérrez, L., González, D.C., Vicente, M.A.: Plain and fiber-reinforced concrete subjected to cyclic compressive loading: Study of the mechanical response and correlations with microstructure using ct scanning. Appl. Sci. 9(15) (2019). https://doi.org/10.3390/app9153030

  29. Sarmiento, E., Geiker, M., Kanstad, T.: Influence of fibre configuration on the mechanical behaviour of standard test specimens and full-scale beams made of flowable frc. Constr. Build. Mater. 111, 794–804 (2016). https://doi.org/10.1016/j.conbuildmat.2016.02.129

    Article  Google Scholar 

  30. Sarmiento, E., Hendriks, M., Geiker, M., Kanstad, T.: Modelling the influence of the fibre structure on the structural behaviour of flowable fibre-reinforced concrete. Eng. Struct. 124, 186–195 (2016). https://doi.org/10.1016/j.engstruct.2016.05.053

    Article  Google Scholar 

  31. Tandon, G.P., Weng, G.J.: The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polym. Compos. 5(4), 327–333 (1984). https://doi.org/10.1002/pc.750050413

    Article  Google Scholar 

  32. Zhang, J., Eisenträger, J., Duczek, S., Song, C.: Discrete modeling of fiber reinforced composites using the scaled boundary finite element method. Compos. Struct. 235, 111744 (2020). https://doi.org/10.1016/j.compstruct.2019.111744

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Estonian Research Council grant (PUT1146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Herrmann.

Additional information

Communicated by Marcus Aßmus, Victor A. Eremeyev and Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrmann, H. A constitutive model for linear hyperelastic materials with orthotropic inclusions by use of quaternions. Continuum Mech. Thermodyn. 33, 1375–1384 (2021). https://doi.org/10.1007/s00161-021-00979-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-00979-4

Keywords

Navigation