Skip to main content
Log in

Handling tensors using tensorial Kelvin bases: application to olivine polycrystal deformation modeling using elastically anistropic CPFEM

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this work we present a simple and convenient method for handling tensors within computational mechanics frameworks based on the Kelvin decomposition. This methodology was set up within a crystal plasticity framework which permits, using the Kelvin base related to the crystal symmetries, to account for elastic anisotropy. The classical mixed velocity pressure finite element formulation has been modified in order to account for the elastic anisotropic behavior introduced into the crystal plasticity model. Moreover this modification of the mixed formulations allows to account for volume/pressure variations that can stream from constitutive models that could allow present compressible plasticity. Using this numerical framework, we explore the influence of elastic anisotropy onto the mechanical behavior of olivine. Our results suggest that at the polycrystal scale, the elastic anisotropy is not of first order importance. However the local changes on the stress state can be important for some physical phenomena such as recrystallization and damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. By symmetric we mean fourth order tensors that present two minor symmetries and the major one:

    $$\begin{aligned} C_{ijkl}=\underbrace{C_{jikl}}_{\text {Minor}}=\underbrace{C_{ijlk}}_{\text {Minor}}=\underbrace{C_{klij}}_{\text {Major}} \end{aligned}$$

References

  1. Lippmann H (1995) Cosserat plasticity and plastic spin

  2. Thomson W (1856) XXI. Elements of a mathematical theory of elasticity. Philos Trans R Soc Lond 146:481–498

    Google Scholar 

  3. Dellinger J, Vasicek D, Sondergeld C (1998) Kelvin notation for stabilizing elastic-constant inversion. Rev. l’Inst. Français Pétrole 53(5):709–719

    Article  Google Scholar 

  4. Cowin SC, Mehrabadi MM (1989) Identification of the elastic symmetry of bone and other materials. J Biomech 22(6–7):503–515

    Article  Google Scholar 

  5. Kocks UF, Tomé CN, Wenk H-R (1998) Texture and anisotropy: preferred orientations in polycrystals and their effect on materials properties. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  6. Robie RA, Bethke PM (1962) Molar volumes and densities of minerals. Unites States Department of the Interior Geological Survey, pp 4–21

  7. Chang J, Zhou X, Liu K, Ge N (2018) Structural, elastic, mechanical and thermodynamic properties of hfb4 under high pressure. R Soc Open Sci 5(7):180701

    Article  Google Scholar 

  8. Sutcliffe S (1992) Spectral decomposition of the elasticity tensor

  9. Marin EB (2006) On the formulation of a crystal plasticity model. Technical report, Sandia National Laboratories

  10. Geers MGD, Cottura M, Appolaire B, Busso EP, Forest S, Villani A (2014) Coupled glide-climb diffusion-enhanced crystal plasticity. J Mech Phys Solids 70:136–153

    Article  MathSciNet  Google Scholar 

  11. Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater 58(4):1152–1211

    Article  Google Scholar 

  12. Wang H, Wu PD, Wang J, Tomé CN (2013) A crystal plasticity model for hexagonal close packed (hcp) crystals including twinning and de-twinning mechanisms. Int J Plast 49:36–52

    Article  Google Scholar 

  13. Ask A, Forest S, Appolaire B, Ammar K, Salman OU (2018) A cosserat crystal plasticity and phase field theory for grain boundary migration. J Mech Phys Solids 115:167–194

    Article  MathSciNet  Google Scholar 

  14. Sarrazola DAR, Muñoz DP, Bernacki M (2020) A new numerical framework for the full field modeling of dynamic recrystallization in a CPFEM context. Comput Mater Sci 179:109645

    Article  Google Scholar 

  15. Sarrazola DAR, Maire L, Moussa C, Bozzolo N, Muñoz DP, Bernacki M (2020) Full field modeling of dynamic recrystallization in a CPFEM context—application to 304l steel. Comput Mater Sci 184:109892

    Article  Google Scholar 

  16. Van Houtte P, Li S, Seefeldt M, Delannay L (2005) Deformation texture prediction: from the Taylor model to the advanced Lamel model. Int J Plast 21(3):589–624

    Article  Google Scholar 

  17. Resk H, Delannay L, Bernacki M, Coupez T, Logé R (2009) Adaptive mesh refinement and automatic remeshing in crystal plasticity finite element simulations. Modell Simul Mater Sci Eng 17(7):075012

    Article  Google Scholar 

  18. Shakoor M, Bernacki M, Bouchard P-O (2015) A new body-fitted immersed volume method for the modeling of ductile fracture at the microscale: analysis of void clusters and stress state effects on coalescence. Eng Fract Mech 147:398–417

    Article  Google Scholar 

  19. Aravas N (1987) On the numerical integration of a class of pressure-dependent plasticity models. Int J Numer Methods Eng 24(7):1395–1416

    Article  Google Scholar 

  20. Zhang ZL et al (1995) Explicit consistent tangent moduli with a return mapping algorithm for pressure-dependent elastoplasticity models. Comput Methods Appl Mech Eng 121(1):29–44

    Article  MathSciNet  Google Scholar 

  21. Arnold DN, Brezzi F, Fortin M (1984) A stable finite element for the stokes equations. Calcolo 21(4):337–344

    Article  MathSciNet  Google Scholar 

  22. Cao T-S, Montmitonnet P, Bouchard P-O (2013) A detailed description of the Gurson–Tvergaard–Needleman model within a mixed velocity–pressure finite element formulation. Int J Numer Meth Eng 96(9):561–583

    Article  MathSciNet  Google Scholar 

  23. Gasc J, Demouchy S, Barou F, Koizumi S, Cordier P (2019) Creep mechanisms in the lithospheric mantle inferred from deformation of iron-free forsterite aggregates at 900–1200c. Tectonophysics 761:16–30

    Article  Google Scholar 

  24. Hansen LN, Warren JM, Zimmerman ME, Kohlstedt. DL (2016) Viscous anisotropy of textured olivine aggregates, part 1: measurement of the magnitude and evolution of anisotropy. Earth Planet Sci Lett 445:92–103

    Article  Google Scholar 

  25. Phakey P, Dollinger G, Christie J (1972) Transmission electron microscopy of experimentally deformed olivine crystals. Flow Fract Rocks 16:117–138

    Google Scholar 

  26. Isaak DG, Anderson OL, Goto T, Suzuki I (1989) Elasticity of single-crystal forsterite measured to 1700 k. J Geophys Res Solid Earth 94(B5):5895–5906

    Article  Google Scholar 

  27. Browaeys JT, Chevrot S (2004) Decomposition of the elastic tensor and geophysical applications. Geophys J Int 159(2):667–678

    Article  Google Scholar 

  28. Raterron P, Detrez F, Castelnau O, Bollinger C, Cordier P, Merkel S (2014) Multiscale modeling of upper mantle plasticity: from single-crystal rheology to multiphase aggregate deformation. Phys Earth Planet Inter 228:232–243

    Article  Google Scholar 

  29. Durinck J, Carrez P, Cordier P (2007) Application of the Peierls–Nabarro model to dislocations in forsterite. Eur J Mineral 19(5):631–639

    Article  Google Scholar 

  30. Tommasi A (1998) Forward modeling of the development of seismic anisotropy in the upper mantle. Earth Planet Sci Lett 160(1–2):1–13

    Article  Google Scholar 

  31. Wenk H-R, Tomé CN (1999) Modeling dynamic recrystallization of olivine aggregates deformed in simple shear. J Geophys Res Solid Earth 104(B11):25513–25527

    Article  Google Scholar 

  32. Mameri L, Tommasi A, Signorelli J, Hansen LN (2019) Predicting viscoplastic anisotropy in the upper mantle: a comparison between experiments and polycrystal plasticity models. Phys Earth Planet Int 286:69–80

    Article  Google Scholar 

  33. Durinck J, Devincre B, Kubin L, Cordier P (2007) Modeling the plastic deformation of olivine by dislocation dynamics simulations. Am Mineral AMER Mineral 92:1346–1357, 08

    Article  Google Scholar 

  34. Laasraoui A, Jonas JJ (1991) Prediction of steel flow stresses at high temperatures and strain rates. Metall Trans A 22(7):1545–1558

    Article  Google Scholar 

  35. Hitti K, Bernacki M (2013) Optimized dropping and rolling (ODR) method for packing of poly-disperse spheres. Appl Math Model 37(8):5715–5722

    Article  MathSciNet  Google Scholar 

  36. Marin EB, McDowell DL (1998) Models for compressible elasto-plasticity based on internal state variables. Int J Damage Mech 7(1):47–83

    Article  Google Scholar 

  37. Shen WQ, Shao J-F, Kondo D, Gatmiri B (2012) A micro–macro model for clayey rocks with a plastic compressible porous matrix. Int J Plast 36:64–85

    Article  Google Scholar 

  38. Lee K-H, Jiang Z, Karato S (2002) A scanning electron microscope study of the effects of dynamic recrystallization on lattice preferred orientation in olivine. Tectonophysics 351(4):331–341

    Article  Google Scholar 

  39. Shimizu I (2008) Theories and applicability of grain size piezometers: the role of dynamic recrystallization mechanisms. J Struct Geol 30(7):899–917

    Article  Google Scholar 

  40. Imran M, Bambach M (2017) A new model for dynamic recrystallization under hot working conditions based on critical dislocation gradients. Proc Eng 207:2107–2112

    Article  Google Scholar 

  41. Mehrabadi MM, Cowin SC (1990) Eigentensors of linear anisotropic elastic materials. Q J Mech Appl Math 43(1):15–41

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge the Computational Mechanics Editor and the two anonymous reviewers for their constructive comments. We wanted to thank Javier Signorelli for the constructive discussions that have advanced this work. The supports of the French Agence Nationale de la Recherche (ANR), ArcelorMittal, FRAMATOME, ASCOMETAL, AUBERT and DUVAL, CEA, SAFRAN through the DIGIMU Industrial Chair and consortium are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Furstoss.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

A Orthorhombic Kelvin base

In the following, \(C_{ij}\) denotes the elastic stiffness matrix written in the Voigt notation such as, for an orthorhombic material:

$$\begin{aligned} C_{ij}= \begin{pmatrix} C_{11} &{} C_{12} &{} C_{13} &{} 0 &{} 0 &{} 0 \\ C_{12} &{} C_{22} &{} C_{23} &{} 0 &{} 0 &{} 0 \\ C_{13} &{} C_{23} &{} C_{33} &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} C_{44} &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} C_{55} &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} C_{66} \end{pmatrix}. \end{aligned}$$
(30)

The first three eigenvalues \(\lambda _{k=1,2,3}\) of the Kelvin base for this type of symmetry are obtained by searching the values for which the following matrix has a null determinant [41]:

$$\begin{aligned} \begin{pmatrix} C_{11} - \lambda &{} C_{12} &{} C_{13} \\ C_{12} &{} C_{22} - \lambda &{} C_{23} \\ C_{13} &{} C_{23} &{} C_{33} - \lambda \end{pmatrix}\text {.} \end{aligned}$$
(31)

The associated eigentensors can be written as:

$$\begin{aligned} \begin{matrix} T_{ij}^{k}= L(\lambda _{k}, \lambda _{i}, \lambda _{j}) \times \\ \tiny \begin{pmatrix} C_{12}C_{23} - C_{13}(C_{22}-\lambda _{k}) &{} 0 &{} 0 \\ 0 &{} C_{12}C_{13}-C_{23}(C_{11}-\lambda _{k}) &{} 0 \\ 0 &{} 0 &{} (C_{11}-\lambda _{k})(C_{22}-\lambda _{k}) - C_{12}^2 \end{pmatrix} \end{matrix}\nonumber \\ \end{aligned}$$
(32)

where:

$$\begin{aligned} \begin{aligned} L(\lambda _{k},\lambda _{i},\lambda _{j}) = \frac{1}{(\lambda _{k}-\lambda _{i})(\lambda _{k}-\lambda _{j})[C_{12}(C_{13}^2 - C_{23}^2)]} \\ \times [ [ C_{12} C_{13} - C_{23}(C_{11} - \lambda _{i}) ] [ (C_{11} - \lambda _{j}) \epsilon _{11} + C_{12} \epsilon _{22} + C_{13} \epsilon _{33} ] \\ - [ C_{12}C_{23} - C_{13} (C_{22} - \lambda _{i} ) ] [ C_{12} \epsilon _{11} + (C_{22} - \lambda _{j}) \epsilon _{22} + C_{23} \epsilon _{33} ] ] \end{aligned}\nonumber \\ \end{aligned}$$
(33)

The last three eigentensors associated to the eigenvalues \(\lambda _4 = 2C_{44}, \lambda _5 = 2C_{55}, \lambda _6 = 2C_{66},\) are:

$$\begin{aligned} \begin{matrix} T_{ij}^4= \begin{pmatrix} 0 &{} \frac{1}{\sqrt{2}} &{} 0 \\ \frac{1}{\sqrt{2}} &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \end{pmatrix} &{} T_{ij}^5= \begin{pmatrix} 0 &{} 0 &{} \frac{1}{\sqrt{2}} \\ 0 &{} 0 &{} 0 \\ \frac{1}{\sqrt{2}} &{} 0 &{} 0 \end{pmatrix} &{} T_{ij}^6= \begin{pmatrix} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} \frac{1}{\sqrt{2}} \\ 0 &{} \frac{1}{\sqrt{2}} &{} 0 \end{pmatrix}\text {.} \end{matrix}\nonumber \\ \end{aligned}$$
(34)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furstoss, J., Ruiz Sarrazola, D., Bernacki, M. et al. Handling tensors using tensorial Kelvin bases: application to olivine polycrystal deformation modeling using elastically anistropic CPFEM. Comput Mech 67, 955–967 (2021). https://doi.org/10.1007/s00466-021-01976-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-021-01976-9

Keywords

Navigation