Paper

Composition uniformity and large degree of strain relaxation in MBE-grown thick GeSn epitaxial layers, containing 16% Sn

, , , , and

Published 18 February 2021 © 2021 IOP Publishing Ltd
, , Citation Jaswant Rathore et al 2021 J. Phys. D: Appl. Phys. 54 185105 DOI 10.1088/1361-6463/abe1e8

0022-3727/54/18/185105

Abstract

We systematically investigate the compositional uniformity, degree of strain relaxation (DSR), defect structure and surface morphology of GeSn epitaxial layers with 16% Sn, grown by low temperature molecular beam epitaxy (MBE) on Ge-buffered Si(001) substrates. Combining atom probe tomography, reciprocal space mapping, cross-sectional transmission electron microscopy, and atomic force microscopy analyses, we demonstrate that for a layer thickness of ${t_{{\text{GeSn}}}} = {\kern1.5pt}{ }250{\text{ nm}}$, a high DSR (∼70%) can be achieved, while maintaining compositional uniformity at the atomic scale. We find no evidence of Sn clustering in the bulk, or Sn segregation to the surface, for at least this value of ${t_{{\text{GeSn}}}}$. The observed compositional uniformity contrasts the well-established phenomenon of strain-relaxation enhancement of Sn content in chemical vapour deposition (CVD) growth of GeSn. The defect structure leading to strain relaxation in these MBE-grown GeSn epitaxial layers is also distinctly different from that observed in CVD growth of the alloy. We observe the co-existence of highly strain-relaxed and pseudomorphically strained regions in the grown epilayers, tentatively explained by bunching of threading dislocations. Considering that MBE growth of GeSn epitaxial layers, with such high-Sn content and layer thickness, has not been reported before, our results are encouraging for future improvements in design and fabrication of group-IV-based mid-infrared photonic devices.

Export citation and abstract BibTeX RIS

Access this article

The computer you are using is not registered by an institution with a subscription to this article. Please choose one of the options below.

Login

IOPscience login

Find out more about journal subscriptions at your site.

Purchase from

Article Galaxy
CCC RightFind

Purchase this article from our trusted document delivery partners.

Make a recommendation

To gain access to this content, please complete the Recommendation Form and we will follow up with your librarian or Institution on your behalf.

For corporate researchers we can also follow up directly with your R&D manager, or the information management contact at your company. Institutional subscribers have access to the current volume, plus a 10-year back file (where available).

Please wait… references are loading.
10.1088/1361-6463/abe1e8