Skip to main content
Log in

Diffraction-Free Mathieu Pulses in a Carbon Nanotube Medium under the Conditions of an Optical Resonator

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The propagation of an extremely short three-dimensional optical pulse in a medium of semiconductor carbon nanotubes under the conditions of a cylindrical optical resonator is studied theoretically. The pulse’s cross section is described by Mathieu functions. Numerical modeling is used to show that such pulses propagate steadily, retaining their energy in a limited spatial region. The pulse is reflected off the walls of the optical resonator and encounters further interference. Calculations are performed in the time domain up to 140 ps, which is important for possible practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bandres, M.A., Gutiérrez-Vega, J.C., and Chávez-Cerda, S., Opt. Lett., 2004, vol. 29, p. 44.

    Article  ADS  Google Scholar 

  2. Jiang, J.-W. and Wang, J.-S., J. Appl. Phys., 2011, vol. 110, 124319.

    Article  ADS  Google Scholar 

  3. Leblond, H. and Mihalache, D., Phys. Rev. A: At., Mol., Opt. Phys., 2012, vol. 86, 043832.

    Google Scholar 

  4. Belonenko, M., Demushkina, E.V., and Lebedev, N.G., J. Russ. Laser Res., 2006, vol. 27, p. 457.

    Article  Google Scholar 

  5. Kivshar, Yu.S. and Agrawal, G., Optical Solitons: From Fibers to Photonic Crystals, New York: Academic, 2003.

    Google Scholar 

  6. Gutiérrez-Vega, J.C., Iturbe-Castillo, M.D., and Ramírez, G.A., Opt. Commun., 2001, vol. 195, p. 35.

    Article  ADS  Google Scholar 

  7. Eletskii, A.V., Phys.—Usp., 1997, vol. 40, no. 9, p. 899.

    Article  ADS  Google Scholar 

  8. Dresselhaus, M.S., Dresselhaus, G., and Eklund, P.C., Science of Fullerenes and Carbon Nanotubes, San Diego: Academic, 1996.

    Google Scholar 

  9. Zhukov, A.V., Bouffanais, R., Fedorov, E.G., et al., J. Appl. Phys., 2013, vol. 114, 143106.

    Article  ADS  Google Scholar 

  10. Bakhvalov, N.S., Chislennye metody (analiz, algebra, obyknovennye differentsial’nye uravneniya) (Numerical Methods: Analysis, Algebra, Ordinary Differential Equations), Moscow: Nauka, 1975.

  11. Abramowits, M. and Stegun, I.A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover, 1964.

    Google Scholar 

Download references

Funding

Yu.V. Dvuzhilova, I.S. Dvuzhilov, and M.B. Belonenko thank the RF Ministry of Science and Higher Education for their State Task in support of numerical modeling, project no. 0633-2020-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Dvuzhilova.

Additional information

Translated by V. Alekseev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dvuzhilova, Y.V., Belonenko, A.M., Dvuzhilov, I.S. et al. Diffraction-Free Mathieu Pulses in a Carbon Nanotube Medium under the Conditions of an Optical Resonator. Bull. Russ. Acad. Sci. Phys. 84, 1483–1485 (2020). https://doi.org/10.3103/S1062873820120114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873820120114

Navigation