Skip to main content
Log in

The Method of the Kernel of the Evolution Equation in the Theory of Gravity

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Covariant perturbation theory allows one to calculate the nonlocal kernel of the evolution equation on a spin Riemannian manifold. The proposed axiomatic definition of effective action introduces a universal scale parameter with the dimension of the square of the distance into the dimensionless mathematical theory. It is shown that this purely geometric result has the physical meaning of the action of field theory, including gravity. The two lowest tensor orders of this covariant functional are independent of the type of the spin group and are local; they reproduce the action of general relativity with a cosmological constant. The modern value of the universal distance scale can be determined by the measured Hubble constant. This scale parameter, considered a physical variable, makes it possible to construct the cosmological theory axiomatically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, and L. Ni, The Ricci Flow: Techniques and Applications, Part I: Geometric Aspects (Am. Math. Soc., Providence, RI, 2007).

    Book  Google Scholar 

  2. B. Andrews and C. Hopper, The Ricci Flow in Riemannian Geometry (Springer, Berlin, 2011).

    Book  Google Scholar 

  3. T. Tao, “Perelman’s proof of the Poincare conjecture: A nonlinear PDE perspective,” arXiv: 0610903[math].

  4. H. S. Ruse, “Taylor’s theorem in the tensor calculus,” Proc. London Math. Soc. 32, 87 (1931). https://doi.org/10.1112/plms/s2-32.1.87

    Article  MathSciNet  MATH  Google Scholar 

  5. J. L. Synge, Relativity: The General Theory (North-Holland, Amsterdam, 1960).

    MATH  Google Scholar 

  6. B. S. de Witt, Dynamical Theory of Groups and Fields (Gordon and Breach, New York, 1965).

    Google Scholar 

  7. T. B. Bahder, “Navigation in curved space-time,” Am. J. Phys. 69, 315 (2001); arXiv: 010107[gr-qc]. https://doi.org/10.1119/1.1326078

  8. D. A. Lee, Geometrical Relativity (Am. Math. Soc., Providence, RI, 2019).

    Book  Google Scholar 

  9. Yu. V. Gusev, “Heat kernel expansion in the covariant perturbation theory,” Nucl. Phys. B 807, 566 (2009); arXiv: 0811.1063. https://doi.org/10.1016/j.nuclphysb.2008.08.008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. A. O. Barvinsky and G. A. Vilkovisky, “Covariant perturbation theory. 2: Second order in the curvature. General algorithms,” Nucl. Phys. B 333, 471 (1990). https://doi.org/10.1016/0550-3213(90)90047-H

    Article  ADS  MathSciNet  Google Scholar 

  11. D. Gilbert, Nachtr. Gesselsh. Wiss. Gottingen, Math.-Phys. Kl. 3, 395 (1915).

    Google Scholar 

  12. P. A. M. Dirac, General Theory of Relativity (Wiley, New York, 1975).

    MATH  Google Scholar 

  13. O. Heaviside, “On operators in physical mathematics. Part I,” Proc. R. Soc. London 52, 504 (1892). archive.org/details/philtrans07543961.

    MATH  Google Scholar 

  14. M. Stock, R. Davis, E. de Mirandés, and M. J. T. Milton, “The revision of the SI the result of three decades of progress in metrology,” Metrologia 56, 022001 (2019). https://doi.org/10.1088/1681-7575/ab0013

    Article  ADS  Google Scholar 

  15. M. Planck, “Über irreversible Strahlungsvorgänge,” Ann. Phys. (Berlin) 1, 69 (1900).

    Article  ADS  Google Scholar 

  16. M. Planck and M. Masius, The Theory of Heat Radiation (Philadelphia, PA, P. Blakinston’s, 1914); The Project Gutenberg EBook No. 40030 (2012), pp. 205, 208. www.gutenberg.org/files/40030.

  17. Bureau International des Poids et Mesures (BIPM), Sèvres, France, New SI of Physical Units. http:// www.bipm.org/en/measurement-Bunits/new-si.

  18. V. A. Fock, “Proper time in classical and quantum mechanics,” Izv. Akad. Nauk SSSR 45, 551 (1937);

    Google Scholar 

  19. V. A. Fock Selected Works: Quantum Mechanics and Quantum Field Theory, Ed. by V. A. Fock, L. D. Faddeev, L. A. Khalfin, and I. V. Komarov (Leningr. Univ., Leningrad, 1957; Chapman and Hall/CRC, Boca Raton, FL, 2004), p. 421.

  20. A. O. Barvinsky, Yu. V. Gusev, G. A. Vilkovisky, and V. V. Zhytnikov, “The basis of nonlocal curvature invariants in quantum gravity theory (third order),” J. Math. Phys. 35, 3525 (1994); arXiv: 9404061[gr-qc]. https://doi.org/10.1063/1.530427

  21. A. O. Barvinsky, Yu. V. Gusev, V. V. Zhytnikov, and G. A. Vilkovisky, “Covariant perturbation theory (IV). Third order in the curvature,” Preprint SPIRES-HEP: PRINT-93-0274 (MANITOBA), arXiv: 0911.1168.

  22. M. Tanabashi et al. (Particle Data Group), “The review of particle physics (2018),” Phys. Rev. D: Part. Fields 98, 030001 (2018).

    Article  ADS  Google Scholar 

  23. R. Penrose and W. Rindler, Spinors and Space Time (Cambridge Univ. Press, Cambridge, 1984).

    Book  Google Scholar 

  24. T. Friedrich, Dirac Operators in Riemannian Geometry (Am. Math. Soc., Providence, RI, 2000).

    Book  Google Scholar 

  25. E. Schrödinger, “Dirac electron in the gravitational field. I,” Gen. Relat. Grav. 52, 4 (2020). https://doi.org/10.1007/s10714-019-2626-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. A. G. Riess et al., “New parallaxes of galactic cepheids from spatially scanning the Hubble Space Telescope: Implications for the Hubble constant,” Astrophys. J. 855, 136 (2018). https://doi.org/10.3847/1538-4357/aaadb7

    Article  ADS  Google Scholar 

  27. P. A. M. Dirac, Directions in Physics (Wiley, New York, 1978.

    Google Scholar 

  28. A. G. Mirzabekian, G. A. Vilkovisky, and V. V. Zhytnikov, “Partial summation of the nonlocal expansion for the gravitational effective action in four-dimension,” Phys. Lett. B 369, 215 (1996). https://doi.org/10.1016/0370-2693(95)01527-2

    Article  ADS  MathSciNet  Google Scholar 

  29. P. A. M. Dirac, “Long-range forces and broken symmetries,” Proc. R. Soc. A 333, 403 (1973). https://doi.org/10.1098/rspa.1973.0070

    Article  ADS  MathSciNet  Google Scholar 

  30. A. G. Mirzabekian and G. A. Vilkovisky, “Particle creation in the effective action method,” Ann. Phys. (N.Y.) 270, 391 (1998); arXiv: 9803006[gr-qc]. https://doi.org/10.1006/aphy.1998.5860

  31. Yu. V. Gusev, “The field theory of specific heat,” Russ. J. Math. Phys. 23, 56 (2016); arxiv:1904.04652[cond-mat]. https://doi.org/10.1134/S1061920816010040

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Gusev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusev, Y.V. The Method of the Kernel of the Evolution Equation in the Theory of Gravity. Phys. Part. Nuclei Lett. 18, 1–4 (2021). https://doi.org/10.1134/S1547477121010076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477121010076

Keywords:

Navigation