Skip to main content
Log in

Eikonal Amplitudes and Nonglobal Logarithms from the BMS Equation

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The Banfi–Marchesini–Smye (BMS) equation accounts for resummation of nonglobal logarithms to all orders in perturbation theory in the large-\({{{\text{N}}}_{{\text{c}}}}\) approximation. We show that the squared amplitudes for the emission of soft energy-ordered gluons are correctly embedded in this equation, and explicitly verify that they coincide with those derived in our previous work in the large-\({{{\text{N}}}_{{\text{c}}}}\) limit up to sixth order in the strong coupling. We perform analytical calculations for the nonglobal logarithms up to fourth order for the specific hemisphere mass distribution in \({{e}^{ + }}{{e}^{ - }}\) collisions, thus confirming our previous semi-numerical results. We show that the solution to the BMS equation may be cast into a product of an infinite number of exponentials each of whichresums a class of Feynman diagrams that manifest a symmetry pattern, and explicitly carry out the computation of the first of these exponentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. When permuting the irreducible parts, e.g. \(\bar {\mathcal{W}}_{{ijk}}^{{{\text{RRR}}}}\), the indices must always be ordered such that \(i < j < k\).

  2. The Feynman diagrams corresponding to these terms look like a ladder (see Fig. 1).

  3. Notice that the evolution parameter \(t\) is denoted as \(\delta \) in [3].

REFERENCES

  1. M. Dasgupta and G. P. Salam, “Resummation of nonglobal QCD observables,” Phys. Lett. B 512, 323–330 (2001); arXiv: hep-ph/0104277.

    Article  ADS  Google Scholar 

  2. M. Dasgupta and G. P. Salam, “Accounting for coherence in interjet Et flow: A case study,” J. High Energy Phys. 0203, 017 (2002); arXiv: hep-ph/0203009.

  3. A. Banfi, G. Marchesini, and G. Smye, “Away from jet energy flow,” J. High Energy Phys. 0208, 006 (2002); arXiv: hep-ph/0206076.

  4. M. D. Schwartz and H. X. Zhu, “Nonglobal logarithms at three loops, four loops, five loops, and beyond,” Phys. Rev. D: Part. Fields 90, 065004 (2014); arXiv: 1403.4949 [hep-ph].

    Article  ADS  Google Scholar 

  5. A. J. Larkoski, I. Moult, and D. Neill, “The analytic structure of nonglobal logarithms: Convergence of the dressed gluon expansion,” J. High Energy Phys. 1611, 089 (2016); arXiv: 1609.04011.

  6. S. Caron-Huot, “Resummation of nonglobal logarithms and the BFKL equation,” J. High Energy Phys. 1803, 036 (2018) arXiv: 1501.03754.

  7. H. Weigert, “Nong-lobal jet evolution at finite Nc,” Nucl. Phys. B 685, 321–350 (2004); arXiv: hep-ph/0312050.

    Article  ADS  Google Scholar 

  8. Y. Hatta and T. Ueda, “Resummation of nonglobal logarithms at finite Nc,” Nucl. Phys. B 874, 808–820 (2013); arXiv: 1304.6930 [hep-ph].

    Article  ADS  Google Scholar 

  9. Y. Hagiwara, Y. Hatta, and T. Ueda, “Hemisphere jet mass distribution at finite Nc,” Phys. Lett. B 756, 254–258 (2016); arXiv: 1507.07641.

  10. R. Ángeles Martínez, M. de Angelis, J. R. Forshaw, S. Plätzer, and M. H. Seymour, “Soft gluon evolution and nonglobal logarithms,” J. High Energy Phys. 1805, 044 (2018); arXiv: 1802.08531.

  11. J. R. Forshaw, J. Holguin, and S. Plätzer, “Parton branching at amplitude level,” J. High Energy Phys. 1908, 145 (2019); arXiv: 1905.08686.

  12. K. Khelifa-Kerfa and Y. Delenda, “Nonglobal logarithms at finite Nc beyond leading order,” J. High Energy Phys. 1503, 094 (2015); arXiv: 1501.00475.

  13. Y. Delenda and K. Khelifa-Kerfa, “Eikonal gluon bremsstrahlung at finite Nc beyond two loops,” Phys. Rev. D: Part. Fields 93, 054027 (2016); arXiv: 1512.05401.

  14. D. Neill, “Nonglobal and clustering effects for groomed multi-prong jet shapes,” J. High Energy Phys. 1902, 114 (2019); arXiv: 1808.04897.

  15. T. Becher, M. Neubert, L. Rothen, and D. Y. Shao, “Effective field theory for jet processes,” Phys. Rev. Lett. 116, 192001 (2016); arXiv: 1508.06645.

  16. M. Dasgupta and G. P. Salam, “Resummed event shape variables in DIS,” J. High Energy Phys. 08, 032 (2002); arXiv: hep-ph/0208073.

  17. M. Dasgupta and G. P. Salam, “Event shapes in e+e annihilation and deep inelastic scattering,” J. Phys. G 30, R143 (2004); arXiv: hep-ph/0312283.

    Article  ADS  Google Scholar 

  18. A. B. Goncharov, “Multiple polylogarithms and mixed tate motives,” arXiv: math/0103059 (2001).

  19. A. B. Goncharov, “Multiple polylogarithms, cyclotomy and modular complexes,” Math. Res. Lett. 5, 497–516 (1998).

    Article  MathSciNet  Google Scholar 

  20. S. Catani, L. Trentadue, G. Turnock, and B. Webber, “Resummation of large logarithms in e+e event shape distributions,” Nucl. Phys. B 407, 3–42 (1993).

    Article  ADS  Google Scholar 

Download references

Funding

This work is supported by:

• Deanship of Research at the Islamic University of Madinah (research project no. 40/107);

• PRFU: B00L02UN050120190001 (Algeria).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Benslama, Y. Delenda, K. Khelifa-Kerfa or A. M. Ibrahim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benslama, H., Delenda, Y., Khelifa-Kerfa, K. et al. Eikonal Amplitudes and Nonglobal Logarithms from the BMS Equation. Phys. Part. Nuclei Lett. 18, 5–18 (2021). https://doi.org/10.1134/S1547477121010039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477121010039

Navigation