Skip to main content
Log in

A New Run Algorithm for Solving the Continuous Linear-Quadratic Optimal Control Problem with Unseparated Boundary Conditions

  • OPTIMAL CONTROL
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

A sweep method is proposed for solving the optimal control problem with unseparated boundary conditions. This model reduces the boundary conditions to the initial condition. Using the properties of the J-symmetry of the corresponding Hamiltonian matrix and Euler–Lagrange equations, it is shown that linear algebraic equations for determining the missing initial data of the system being solved have a symmetric matrix of coefficients. The proposed algorithm allows us to reduce the dimension of the problem of finding the fundamental matrix of the Hamiltonian system. The results are illustrated by the example of a linear-quadratic optimal control problem (stationary case) with the minimal control actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. F. A. Aliev, “Optimization problem with two-point boundary conditions,” Izv. Akad. Nauk SSSR, Tekh. Kibern., No. 6, 138–146 (1985).

  2. B. A. Bordyug, V. B. Larin, and A. G. Timeshenko, Control Tasks for Walking Vehicles (Nauk. Dumka, Kiev, 1985) [in Russian].

    Google Scholar 

  3. V. E. Shamanskii, Methods for the Numerical Solution of Boundary Value Problems on a Digital Computer, Part 1 (Kiev, Nauk. Dumka, 1966, 1963) [in Russian].

  4. F. A. Aliev, “Optimal control problem for a linear system with nonseparated two-point boundary conditions,” Differ. Uravn., No. 2, 345–347 (1986).

  5. F. A. Aliev, “Optimal control problem for a linear system with nonseparated two-point boundary conditions,” Izv. Akad. Nauk Az SSR, Ser. Fiz. Tekh. Mat. Nauk., No. 2, 345–347 (1986).

  6. F. A. Aliev and N. A. Ismailov, “Methods for solving optimization problems with two-point boundary conditions,” Preprint No. 151 (Inst. Phys. Acad. Sci. AzSSR, Baku, 1985).

  7. M. M. Mutallimov and F. A. Aliev, Methods for Solving Optimization Problems during the Operation of Oil Wells (LAP Lambert, Saarbrücken, Deutscland, 2012).

  8. M. M. Mutallimov, R. T. Zul’fugarova, and A. P. Guliev, “A sweeping algorithm for solving optimal control problems with nonseparated boundary conditions,” Vestn. BGU, Ser. Fiz. Mat. Nauk., No. 2, 153–160 (2009).

  9. F. A. Aliev, Methods for Solving Applied Problems of Optimization of Dynamic Systems (Elm, Baku, 1989) [in Russian].

  10. M. M. Mutallimov, “Sweep method for the solution of optimization problem with three point boundary conditions with unseparabilities in the internal and end points,” Dokl. NAN Azerb. 63 (2), 24–29 (2007).

    MathSciNet  Google Scholar 

  11. K. Moszynski, “A method of solving the boundary value problem for a system of linear ordinary differensial equations,” Algorytmy 11 (3), 25–43 (1964).

    MathSciNet  Google Scholar 

  12. A. A. Abramov, “On the transfer of boundary conditions for systems of linear ordinary differential equations (a variant of the sweep method),” Zh. Vychisl. Mat. Mat. Fiz. 1, 542–545 (1961).

    Google Scholar 

  13. F. A. Aliev, “Comments on 'Sweep algorithm for solving optimal control problem with multi-point boundary conditions' by M. Mutallimov, R. Zulfuqarova and L. Amirova,” Adv. Differ. Equat. 2016, 131 (2016).

    Article  MathSciNet  Google Scholar 

  14. M. M. Mutallimov, L. I. Amirova, F. A. Aliev, Sh. A. Faradjova, and I. A. Maharramov, “Remarks to the paper: Sweep algorithm for solving optimal control problem with multi-point boundary conditions,” TWMS J. Pure Appl. Math. 9, 243–246 (2018).

    MathSciNet  MATH  Google Scholar 

  15. Yu. N. Andreev, Controlling Finite-Dimensional Line Features (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  16. A. Bryson and Yu-Chi Ho, Applied Optimal Control: Optimization, Estimation and Control (CRC, Boca Raton, FL, 1975).

  17. M. Kh. Zakhar-Itkin, “Riccati matrix differential equation and the semigroup of linear fractional transformations,” Usp. Mat. Nauk. 28 (3), 83–120 (1973).

    MathSciNet  MATH  Google Scholar 

  18. V. B. Larin, Walking Apparatus Control (Nauk. Dumka, Kiev, 1980) [in Russian].

    MATH  Google Scholar 

  19. M. M. Mutallimov, R. T. Zul’fugarova, and L. I. Amirova, “Sweep algorithm for solving optimal control problem with multi-point boundary conditions,” Adv. Differ. Equat. 2015, 233 (2015).

    Article  MathSciNet  Google Scholar 

  20. R. H. Hamidov and M. M. Mutallimov, “Dimension reduction of one multivariable decision making problem,” Appl. Comput. Math. 18, 62–68 (2019).

    MathSciNet  MATH  Google Scholar 

  21. F. A. Aliev, N. S. Hajiyeva, N. A. Ismailov, and S. M. Mirsaabov, “Calculation algorithm defining the coefficient of hydraulic resistance on different areas of pump-compressor pipes in gas lift process by lines method,” SOCAR Proc., No. 4, 13–17 (2019).

  22. F. A. Aliev, N. A. Aliev, A. P. Guliev, R. M. Tagiev, and M. A. Dzhamalbekov, “A method for solving a boundary value problem for a system of hyperbolic equations describing motion in a gas-lift process,” Prikl. Mat. Mekh. 82, 512–519 (2018).

    Google Scholar 

  23. A. Ashyralyev, A. S. Erdogan, and S. N. Tekalan, “An investigation on finite difference method for the first order partial differential equation with the nonlocal boundary condition,” Appl. Comput. Math. 18, 247–260 (2019).

    MathSciNet  MATH  Google Scholar 

  24. F. Aliev, V. Larin, N. Velieva, K. Gasimova, and Sh. Faradjova, “Algorithm for solving the systems of the generalized sylvester-transpose matrix equations using LMI,” TWMS J. Pure Appl. Math. 10, 239–245 (2019).

    MathSciNet  MATH  Google Scholar 

  25. J. Zhang, Yu. Shen, and J. He, “Some analytical methods for singular boundary value problem in a fractal space: A review,” Appl. Comput. Math. 18, 225–235 (2019).

    MathSciNet  MATH  Google Scholar 

  26. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach Science, Amsterdam, 1993).

    MATH  Google Scholar 

  27. F. A. Aliev, N. A. Aliev, N. A. Safarova, K. G. Gasimova, and N. I. Velieva, “Solution of linear fractional-derivative ordinary differential equations with constant matrix coefficients,” Appl. Comput. Math. 17, 317–322 (2018).

    MathSciNet  MATH  Google Scholar 

  28. G. Ahmad, N. Omid, and Mahboubeh Molavi-Arabshahi, “Numerical approximation of time fractional advection-dispersion model arising from solute transport in rivers,” TWMS J. Pure Appl. Math. 10, 117–131 (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. A. Aliev, N. Sh. Guseinova, I. A. Maharramov or M. M. Mutallimov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliev, F.A., Guseinova, N.S., Maharramov, I.A. et al. A New Run Algorithm for Solving the Continuous Linear-Quadratic Optimal Control Problem with Unseparated Boundary Conditions. J. Comput. Syst. Sci. Int. 60, 48–55 (2021). https://doi.org/10.1134/S1064230721010020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230721010020

Navigation