Skip to main content
Log in

Zonal Features in the Behavior of Weak Molecular Absorption Bands on Jupiter

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

Based on the spectral observations of Jupiter carried out over recent years, we consider the behavior of weak molecular absorption bands of methane and ammonia in a wavelength range of 600−800 nm. In the latitudinal behavior of the intensity of these bands, rather clearly expressed features, demonstrating a connection with the zonal structure of cloud belts of the planet, are traced. However, for different bands, the positions of the absorption extrema in latitude somewhat differ. The changes in the zonal spectra show the weakening in absorption observed toward the disk edge, which is most probably connected with the radiative transfer geometry in an optically active layer of the atmosphere. The importance of studying the weak absorption bands is stressed, since precisely these bands make it possible to analyze the structural features and their variations in the troposphere of Jupiter. When interpreting the observational data, it is necessary to consider at least two alternative models for forming the absorption bands. One of them should deal with an optically thick layer of ammonia clouds, where the multiple scattering on particles in this layer plays the main part in producing the molecular absorption bands. The second model should be based on the assumption of a small optical thickness of the ammonia cloud layer, according to which the absorption is mainly formed under clouds, where the scattering on a pure gaseous component is weak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Atreya, S.K., Wong, A.S., Baines, K.H., Wong, M.H., and Owen, T.C., Jupiter’s ammonia clouds—localized or ubiquitous?, Planet. Space Sci., 2005, vol. 53, no. 5, pp. 498–507.

    Article  ADS  Google Scholar 

  2. Baines, K.H., Sromovsky, L.A., Carlson, R.W., Momary, T.W., and Fry, P.M., The visual spectrum of Jupiter’s Great Red Spot accurately modeled with aerosols produced by photolyzed ammonia reacting with acetylene, Icarus, 2019, vol. 330, pp. 217–229.

    Article  ADS  Google Scholar 

  3. Bjoraker, G.L., Wong, M.H., de Pater, I., Hewagama, T., Ádámkovics, M., and Orton, G.S., The gas composition and deep cloud structure of Jupiter’s Great Red Spot, Astron. J., 2018, vol. 156, no. 3, pp. 101–124.

    Article  ADS  Google Scholar 

  4. Bowles, N., Calcutt, S., Irwin, P., and Temple, J., Band parameters for self-broadened ammonia gas in the range 0.74 to 5.24 μm to support measurements of the atmosphere of the planet Jupiter, Icarus, 2008, vol. 196, pp. 612–624.

    Article  ADS  Google Scholar 

  5. Bowles, N., personal communication, 2009.

  6. Braude, A.S., Irwin, P.G.J., Orton, G.S., and Fletcher, L.N., Colour and tropospheric cloud structure of Jupiter from MUSE/VLT: Retrieving a universal chromophore, Icarus, 2020, vol. 338 P, pp. 113589–113607.

  7. Cochran, W.D. and Cochran, A.L., Longitudinal variability of methane and ammonia bands on Jupiter, Icarus, 1980, vol. 42, pp. 102–110.

    Article  ADS  Google Scholar 

  8. Cochran, W.D. and Cochran, A.L., Longitudinal variability of methane and ammonia bands on Jupiter. II. Temporal variations, Icarus, 1983, vol. 56, pp. 116–121.

    Article  ADS  Google Scholar 

  9. Cosentino, R.G., Butler, B., Sault, B., Morales-Juberías, R., Simon, A., and De Pater, I., Atmospheric waves and dynamics beneath Jupiter’s clouds from radio wavelength observations, Icarus, 2017, vol. 292, pp. 168–181.

    Article  ADS  Google Scholar 

  10. de Pater, I., Sault, R.J., Moeckel, C., Moullet, A., Wong, M.H., Goullaud, C., and Cosentino, R., First ALMA millimeter-wavelength maps of Jupiter, with a multiwavelength study of convection, Astron. J., 2019b, vol. 158, no. 4, pp. 139–145.

    Article  ADS  Google Scholar 

  11. de Pater, I., Sault, R.J., Wong, M.H., Fletcher, L.N., DeBoer, D., and Butler, B., Jupiter’s ammonia distribution derived from VLA maps at 3–37 GHz, Icarus, 2019a, vol. 322, pp. 168–191.

    Article  ADS  Google Scholar 

  12. de Pater, R.J., Sault, B., Butler, D., DeBoer, M., and Wong, H., Peering through Jupiter’s clouds with radio spectral imaging, Science, 2016, vol. 352, no. 6290, pp. 1290–1294.

    Article  Google Scholar 

  13. Fink, U., Benner, D.Ch., and Dick, K.A., Band model analysis of laboratory methane absorption spectra from 4500 to 10500 Å, J. Quant. Spectrosc. Radiat. Transfer, 1977, vol. 18, pp. 447–457.

    Article  ADS  Google Scholar 

  14. Fletcher, L.N., Greathouse, T.K., Orton, G.S., Sinclair, J.A., Giles, R.S., Irwin, P.G.J., and Encrenaz, T., Mid-infrared mapping of Jupiter’s temperatures, aerosol opacity and chemical distributions with IRTF/TEXES, Icarus, 2016, vol. 278, pp. 128–161.

    Article  ADS  Google Scholar 

  15. Fletcher, L.N., Orton, G.S., Rogers, J.H., Giles, R.S., Payne, A.V., Irwin, P.G.J., and Vedovato, M., Moist convection and the 2010-2011 revival of Jupiter’ South equatorial belt, Icarus, 2017, vol. 286, pp. 94–117.

    Article  ADS  Google Scholar 

  16. Giver, L.P., Miller, J.H., and Boese, R.W., A laboratory atlas of the 5ν1 NH3 absorption band at 6475 Å with applications to Jupiter and Saturn, Icarus, 1975, vol. 25, pp. 34–48.

    Article  ADS  Google Scholar 

  17. Grassi, D., Atmospheric physics and atmospheres of Solar System bodies, in Astrophysics of Exoplanetary Atmospheres, Springer, 2018, pp. 135–199.

    Google Scholar 

  18. Irwin, P.G., Bowles, N., Braude, A.S., Garland, R., Calcutt, S., Coles, P.A., and Tennyson, J., Analysis of gaseous ammonia (NH3) absorption in the visible spectrum of Jupiter-update, Icarus, 2019, vol. 321, pp. 572–582.

    Article  ADS  Google Scholar 

  19. Irwin, P.G.J., Bowles, N., Braude, A.S., Garland, R., and Calcutt, S., Analysis of gaseous ammonia (NH3) absorption in the visible spectrum of Jupiter, Icarus, 2018, vol. 302, pp. 426–436.

    Article  ADS  Google Scholar 

  20. Karkoschka, E., Methane, ammonia, and temperature measurements of the Jovian Planets and Titan from CCD-spectrophotometry, Icarus, 1998, vol. 133, no. 1, pp. 134–146.

    Article  ADS  Google Scholar 

  21. Karkoschka, E., Spectrophotometry of Jovian Planets and Titan at 300- to 1000- nm wavelength: The methane spectrum, Icarus, 1994, vol. 111, pp. 174–192.

    Article  ADS  Google Scholar 

  22. Lewis, J.S., The clouds of Jupiter and the NH3-H2O and NH3-H2S systems, Icarus, 1969, vol. 10, no. 3, pp. 365–378.

    Article  ADS  Google Scholar 

  23. Lutz, B.L. and Owen, T., The visible bands of ammonia: Band strengths, curves of growth, and the spatial distribution of ammonia on Jupiter, Astron. J., 1980, vol. 235, pp. 285–293.

    Article  Google Scholar 

  24. Moreno, F. and Molina, A., Jupiter’s atmospheric parameters derived from spectroscopic observations in the red region during the 1988 opposition, Astron. Astrophys., 1991, vol. 241, pp. 243–250.

    ADS  Google Scholar 

  25. Moreno, F., Rodrigo, R., Sanchez-Lavega, A., and Molina, A., Spectroscopic observations of the CH4 6190 Å and NH3 6450 Å absorption bands at different regions of the jovian disk, Astron. Astrophys., Suppl. Ser., 1988, vol. 74, pp. 233–238.

    ADS  Google Scholar 

  26. Orton, G.S., Appleby, J.F., and Martonchik, J.V., The effect of ammonia ice on the outgoing thermal radiance from the atmosphere of Jupiter, Icarus, 1982, vol. 52, pp. 94–116.

    Article  ADS  Google Scholar 

  27. Orton, G.S., Friedson, A.J., Yanamandra-Fisher, P.A., Caldwell, J., Hammel, H., Baines, K.H., Bergstralh, J.T., Martin, T.Z., West, R.A., Veeder, G.J., Lynch, D.K., Russell, R., Malcom, M.E., Golisch, W.F., Griep, D.M., Kaminski, C.D., Tokunaga, A.T., Baron, R., Herbst, T., and Shure, M., Thermal maps of Jupiter: Spatial organization and time dependence of tropospheric temperatures 1980–1993, Science, 1994, vol. 265, pp. 625–631.

    Article  ADS  Google Scholar 

  28. Orton, G.S., Hansen, C., Janssen, M.A., Bolton, S., Brown, S., Eichstaedt, G., Rogers, J., Ingersoll, A.P., Li, Ch., Momary, T.W., Tabataba-Vakili, F., Fletcher, L., Fujiyoshi, T., Greathouse, T.K., Kasaba, Ya., et al., Characterization of the Great Red Spot from observations by Juno and the Earth-based supporting campaign, American Astronomical Society, DPS Meeting #49, 2017, id. 205.2.

  29. Ragen, B., Colburn, D.S., Rages, K.A., Knight, T.C.D., Avrin, P., Orton, G.S., Yanamandra-Fisher, P.A., and Grams, G.W., The clouds of Jupiter: Results of the Galileo Jupiter mission probe nephelometer experiment, J. Geophys. Res., 1998, vol. 103, pp. 22891–22910.

    Article  ADS  Google Scholar 

  30. Sánchez-Lavega, A., Hueso, R., Pérez-Hoyos, S., García-Melendo, E., and Rojas, J.F., Observations and models of the general circulation of Jupiter and Saturn, Lect. Notes Essays Astrophys., 2003, vol. 1, p. 63–86.

    ADS  Google Scholar 

  31. Tejfel’, V.G., Kharitonova, G.A., Glushkova, E.A., and Sinyaeva, N.V., Variations of the methane absorptions on Jupiter’s disk from zonal CCD spectrofotometry data, Sol. Sys. Res., 2001, vol. 35, no. 4, pp. 261–277.

    Article  ADS  Google Scholar 

  32. Tejfel’, V.G., Vdovichenko, V.D., Lysenko, P.G., Karimov, A.M., Kirienko, G.A., Bondarenko, N.N., Kharitonova, G.A., and Filippov, V.A., On the NH3 absorption depression observable at northern low latitudes of Jupiter, American Astronomical Society, DPS Meeting #48, id. 421.14

  33. Tejfel’, V.G., Vdovichenko, V.D., Lysenko, P.G., Karimov, A.M., Kirienko, G.A., Bondarenko, N.N., Filippov, V.A., Kharitonova, G.A., and Khozhenets, A.P., Ammonia in Jupiter’s atmosphere: Spatial and temporal variations of the NH3 absorption bands at 645 and 787 nm, Sol. Syst. Res., 2018a, vol. 52, pp. 480–494.

    Article  ADS  Google Scholar 

  34. Tejfel’, V.G., Vdovichenko, V.D., Lysenko, P.G., Karimov, A.M., Kirienko, G.A., Filippov, V.A., Kharitonova, G.A., and Khozhenets, A.P., The Great Red Spot on Jupiter: Some features of the ammonia absorption, Izv. Nats. Akad. Nauk Resp. Kaz., Ser. Fiz.-Mat., 2018b, no. 3, pp. 23–31.

  35. Weidenschilling, S.J. and Lewis, J.S., Atmospheric and cloud structures of the Jovian planets, Icarus, 1973, vol. 20, pp. 465–476.

    Article  ADS  Google Scholar 

  36. Wong, M.H., Atreya, S.K., Kuhn, W.R., Romani, P.N., and Mihalka, K.M., Fresh clouds: A parameterized updraft method for calculating cloud densities in one-dimensional models, Icarus, 2015, vol. 245, pp. 273–281.

    Article  ADS  Google Scholar 

Download references

Funding

The study was supported by the Ministry of Education and Science of the Republic of Kazakhstan (projects 0073/GF4 and AR05131266).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Vdovichenko.

Additional information

Translated by E. Petrova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vdovichenko, V.D., Karimov, A.M., Kirienko, G.A. et al. Zonal Features in the Behavior of Weak Molecular Absorption Bands on Jupiter. Sol Syst Res 55, 35–46 (2021). https://doi.org/10.1134/S003809462101010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003809462101010X

Keywords:

Navigation