Skip to main content
Log in

Plasmon–Molecule Coupling with Directional Absorption Features: A First-Principles Study

  • Original Article
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The coupling between plasmonic nanocavity and quantum emitters has been a major focus of quantum optics and material science research over the last few years. In this work, using state-of-the-art first-principles calculations, we investigate the spatial distributions of the induced charge density and electric near-field enhancements of a nanosystem consisting of an aluminum nanotriangle interacting with the varying number of benzene molecules positioned at the nanotriangle tips. We find interesting modifications in the induced charge density and electric near-field enhancements with a remarkable sensitivity to the number of interacting benzene molecules and to the direction of light illumination. In a broader perspective, our quantum mechanical results provide quantitative access to the electric near-field enhancements at the nanoscale useful for designing ultra-small plasmonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

The computational codes employed in the current study are available from the corresponding author on reasonable request.

References

  1. Novotny L, Hecht B (2006) Principles of Nano-Optics. Cambridge University Press

  2. Willets KA, Duyne RPV (2007) Annu Rev Phys Chem 58:267–297 (PMID: 17067281)

    Article  CAS  PubMed  Google Scholar 

  3. Hao F, Sonnefraud Y, Dorpe PV, Maier SA, Halas NJ, Nordlander P (2008) Nano Lett 8:3983–3988 (PMID: 18831572)

    Article  CAS  PubMed  Google Scholar 

  4. Mayer KM, Hafner JH (2011) Chem Rev 111:3828–3857 (PMID: 21648956)

    Article  CAS  PubMed  Google Scholar 

  5. de Barros HR, Lopez-Gallego F, Liz-Marzan, LM Biochemistry 0, 0, null PMID:32643921

  6. Journal of Materiomics (2017) 3:33-50 Special Issue on

  7. Zhou L, Martirez JMP, Finzel J, Zhang C, Swearer DF, Tian S, Robatjazi H, Lou M, Dong L, Henderson L, Christopher P, Carter EA, Nordlander P, Halas NJ (2020) Nat Energy 5:61–70

    Article  CAS  Google Scholar 

  8. Zhang Q, Large N, Wang H (2014) ACS Appl Mater Interfaces 6:17255–17267 (PMID: 25222940)

    Article  CAS  PubMed  Google Scholar 

  9. Barbosa S, Agrawal A, Rodrguez-Lorenzo L, Pastoriza-Santos I, Alvarez-Puebla RA, Kornowski A, Weller H, Liz-Marzan LM (2010) Langmuir 26:14943–14950 (PMID: 20804155)

    Article  CAS  PubMed  Google Scholar 

  10. Khoury CG, Vo-Dinh T (2008) J Phys Chem C 112:18849–18859

    Article  CAS  Google Scholar 

  11. Sanchez-Gaytan BL, Swanglap P, Lamkin TJ, Hickey RJ, Fakhraai Z, Link S, Park SJ (2012) J Phys Chem C 116:10318–10324

    Article  CAS  Google Scholar 

  12. Keast VJ, Walhout CJ, Pedersen T, Shahcheraghi N, Cortie MB, Mitchell DRG (2016) Plasmonics 11:1081–1086

    Article  CAS  Google Scholar 

  13. Kumar A, Fung KH, Mabon JC, Chow E, Fang NX (2010) J Vac Sci Technol B 28, C6C21-C6C25

  14. Sherry LJ, Jin R, Mirkin CA, Schatz GC, Van Duyne RP (2006) Nano Lett 6:2060–2065 (PMID: 16968025)

    Article  CAS  PubMed  Google Scholar 

  15. Rossi TP, Shegai T, Erhart P, Antosiewicz TJ (2019) Nat Commun 10:3336

    Article  PubMed  PubMed Central  Google Scholar 

  16. Campos A, Arbouet A, Martin J, Gerard D, Proust J, Plain J, Kociak M (2017) ACS Photonics 4:1257–1263

    Article  CAS  Google Scholar 

  17. Chan GH, Zhao J, Schatz GC, Van Duyne RP (2008) J Phys Chem C 112:13958–13963

    Article  CAS  Google Scholar 

  18. Knight MW, King NS, Liu L, Everitt HO, Nordlander P, Halas NJ (2014) ACS Nano 8:834–840 (PMID: 24274662)

    Article  CAS  PubMed  Google Scholar 

  19. Gérard D, Gray SK (2014) J Phys D Appl Phys 48:184001

    Article  Google Scholar 

  20. McClain MJ, Schlather AE, Ringe E, King NS, Liu L, Manjavacas A, Knight MW, Kumar I, Whitmire KH, Everitt HO, Nordlander P, Halas NJ (2015) Nano Lett 15:2751–2755 (PMID: 25790095)

    Article  CAS  PubMed  Google Scholar 

  21. Clark BD, Jacobson CR, Lou M, Yang J, Zhou L, Gottheim S, De-Santis CJ, Nordlander P, Halas NJ (2018) Nano Lett 18:1234–1240 (PMID:29272131)

    Article  CAS  PubMed  Google Scholar 

  22. Clark BD, Jacobson CR, Lou M, Renard D, Wu G, Bursi L, Ali AS, Swearer DF, Tsai AL, Nordlander P, Halas NJ (2019) ACS Nano 13:9682–9691 (PMID: 31397561)

    Article  CAS  PubMed  Google Scholar 

  23. Knight MW, Liu L, Wang Y, Brown L, Mukherjee S, King NS, Everitt HO, Nordlander P, Halas NJ (2012) Nano Lett 12:6000–6004 (PMID:23072330)

    Article  CAS  PubMed  Google Scholar 

  24. Tian S, Neumann O, McClain MJ, Yang X, Zhou L, Zhang C, Nordlander P, Halas NJ (2017) Nano Lett 17:5071–5077 (PMID: 28664736)

    Article  CAS  PubMed  Google Scholar 

  25. Su MN, Dongare PD, Chakraborty D, Zhang Y, Yi C, Wen F, Chang WS, Nordlander P, Sader JE, Halas NJ, Link S (2017) Nano Lett 17:2575–2583 (PMID: 28301725)

    Article  CAS  PubMed  Google Scholar 

  26. Su MN, Ciccarino CJ, Kumar S, Dongare PD, Hosseini Jebeli SA, Renard D, Zhang Y, Ostovar B, Chang WS, Nordlander P, Halas NJ, Sundararaman R, Narang P, Link S (2019) Nano Lett 19:3091–3097 (PMID:30935208)

    Article  CAS  PubMed  Google Scholar 

  27. Dabos G, Manolis A, Tsiokos D, Ketzaki D, Chatzianagnostou E, Markey L, Rusakov D, Weeber J-C, Dereux A, Giesecke A-L, Porschatis C, Wahlbrink T, Chmielak B, Pleros N (2018) Sci Rep 8:13380

    Article  PubMed  PubMed Central  Google Scholar 

  28. Halperin WP (1986) Rev Mod Phys 58:533–606

    Article  CAS  Google Scholar 

  29. Townsend E, Bryant GW (2012) Nano Lett 12:429–434 (PMID: 22181554)

    Article  CAS  PubMed  Google Scholar 

  30. Zhang P, Feist J, Rubio A, García-González P, García-Vidal FJ (2014) Phys Rev B 90:161407

    Article  Google Scholar 

  31. Garcia de Abajo FJ (2008) J Phys Chem C 112:17983-17987

  32. David C, Garcia de Abajo FJ (2011) J Phys Chem C 115:19470–19475

    Article  CAS  Google Scholar 

  33. Mortensen JJ, Hansen LB, Jacobsen KW (2005) Phys Rev B 71:035109

    Article  Google Scholar 

  34. Walter M, Hakkinen H, Lehtovaara L, Puska M, Enkovaara J, Rostgaard C, Mortensen JJ (2008) J Chem Phys 128:244101

    Article  PubMed  Google Scholar 

  35. Larsen AH et al (2017) J Phys Condens Matter 29:273002

    Article  Google Scholar 

  36. Kohn W, Sham LJ (1965) Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  37. Perdew JP, Zunger A (1981) Phys Rev B 23:5048–5079

    Article  CAS  Google Scholar 

  38. Hsu CP, Hirata S, Head-Gordon M (2001) J Phys Chem A 105:451–458

    Article  CAS  Google Scholar 

  39. Silverstein DW, Govind N, van Dam HJJ, Jensen L (2013) J Chem Theory Comput 9:5490–5503 (PMID: 26592284)

    Article  CAS  PubMed  Google Scholar 

  40. Neugebauer J (2007) J Chem Phys 126:134116

    Article  PubMed  Google Scholar 

  41. Grimme S (2013) J Chem Phys 138:244104

    Article  PubMed  Google Scholar 

  42. Niehaus TA, Suhai S, Della Sala F, Lugli P, Elstner M, Seifert G, Frauenheim T (2001) Phys Rev B 63:085108

    Article  Google Scholar 

  43. Mokkath JH (2019) New J Chem 43:18268–18276

    Article  CAS  Google Scholar 

  44. Muhammed MM, Mokkath JH (2019) New J Chem 43:10774–10783

    Article  CAS  Google Scholar 

  45. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439–4449

    Article  CAS  Google Scholar 

  46. Rossi TP, Zugarramurdi A, Puska MJ, Nieminen RM (2015) Phys Rev Lett 115:236804

    Article  PubMed  Google Scholar 

  47. Rossi TP, Kuisma M, Puska MJ, Nieminen RM, Erhart P (2017) J Chem Theory Comput 13:4779–4790 (PMID: 28862851)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research reported in this publication was supported by Kuwait College of Science And Technology (KCST).

Author information

Authors and Affiliations

Authors

Contributions

M. M. Mufasila contributed to conceptualization, data curation, formal analysis, and writing—original draft. J. H. Mokkath contributed to funding acquisition, project administration, resources, software, supervision, validation, writing—review, and editing.

Corresponding author

Correspondence to Junais Habeeb Mokkath.

Ethics declarations

Conflict of Interest

There are no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammed, M.M., Mokkath, J.H. Plasmon–Molecule Coupling with Directional Absorption Features: A First-Principles Study. Plasmonics 16, 1287–1296 (2021). https://doi.org/10.1007/s11468-021-01402-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01402-z

Keywords

Navigation