Skip to main content
Log in

Formation of a Nanosecond Discharge in Argon at Atmospheric Pressure Under Gas Pre-Ionization Conditions

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The results of modeling a nanosecond discharge in a uniform electric field in argon at atmospheric pressure based on two kinetic models are compared: with one and with six excited states, respectively. The analysis of the development of ionization waves in a centimeter gap in a two-dimensional axisymmetric geometry is performed. It is shown that the obtained result is influenced by the choice of the transport cross-section of electron scattering on the argon atom. The electric field strengths, charged particle concentrations, and velocities of cathode- and anode-directed ionization waves at different time points are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. Erofeev, V. Ripenko, M. Shulepov, and V. Tarasenko, Eur. Phys. J. D 71, 117 (2017).

    Article  ADS  Google Scholar 

  2. A. Komuro, K. Takashima, K. Suzuki, S. Kanno, T. Nonomura, T. Kaneko, A. Ando, and K. Asai, Plasma Sources Sci. Technol. 27, 104005 (2018).

  3. D. V. Tereshonok, Tech. Phys. Lett. 40, 135 (2014).

    Article  ADS  Google Scholar 

  4. V. V. Golub’, A. S. Saveliev, V. A. Sechenov, E. E. Son, and D. V. Tereshonok, High Temp. 48, 903 (2010).

    Article  Google Scholar 

  5. E. E. Son and D. V. Tereshonok, EPL 99, 15002 (2012).

    Article  ADS  Google Scholar 

  6. D. V. Tereshonok, High Temp. 52, 344 (2014).

    Article  Google Scholar 

  7. S. Starikovskaia, J. Phys. D: Appl. Phys. 47, 353001 (2014).

  8. N. A. Popov, Plasma Sources Sci. Technol. 20, 045002 (2011).

  9. N. L. Aleksandrov, S. V. Kindysheva, I. N. Kosarev, S. M. Starikovskaia, and A. Y. Starikovskii, Proc. Combust. Inst. 32, 205 (2009).

    Article  Google Scholar 

  10. A. Yu. Starikovskii, A. A. Nikipelov, M. M. Nudnova, and D. V. Roupassov, Plasma Sources Sci. Technol. 18, 034015 (2009).

  11. G. Fridman, G. Friedman, A. Gutsol, A. B. Shekhter, V. N. Vasilets, and A. Fridman, Plasma Processes Polym. 5, 503 (2008).

    Article  Google Scholar 

  12. G. E. Morfill and J. L. Zimmermann, Contrib. Plasma Phys. 52, 655 (2012).

    Article  ADS  Google Scholar 

  13. J. Ehlbeck, U. Schnabel, M. Polak, J. Winter, Th. von Woedtke, R. Brandenburg, T. von dem Hagen, and K.-D. Weltmann, J. Phys. D: Appl. Phys. 44, 013002 (2011).

  14. N. A. Dyatko, Yu. Z. Ionikh, S. A. Kalinin, and A. A. Mityureva, Plasma Phys. Rep. 46, 200 (2020).

    Article  ADS  Google Scholar 

  15. V. M. Shibkov, Plasma Phys. Rep. 46, 230 (2020).

    Article  ADS  Google Scholar 

  16. M. A. Sargsyan, M. Kh. Gadzhiev, D. V. Tereshonok, and A. S. Tyuftyaev, Phys. Plasmas 25, 073511 (2018).

  17. M. A. Sargsyan, D. V. Tereshonok, G. E. Valyano, V. V. Scherbakov, P. A. Konovalov, M. Kh. Gadzhiev, Phys. Plasmas 27, 023506 (2020).

  18. M. Kh. Gadzhiev, M. A. Sargsyan, D. V. Tereshonok, and A. S. Tyuftyaev, EPL 111, 25001 (2015).

    Article  ADS  Google Scholar 

  19. M. Kh. Gadzhiev, M. A. Sargsyan, D. V. Tereshonok, and A. S. Tyuftyaev, EPL 115, 35002 (2016).

    Article  ADS  Google Scholar 

  20. V. P. Kim, V. S. Zakharchenko, D. V. Merkur’ev, P. G. Smirnov, amd E. A. Shilov, Plasma Phys. Rep. 45, 11 (2019).

    Article  ADS  Google Scholar 

  21. S. I. Braginskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 205.

    Google Scholar 

  22. N. Y. Babaeva and M. J. Kushner, Plasma Sources Sci. Technol. 18, 035009 (2009).

  23. D. V. Tereshonok, N. Y. Babaeva, G. V. Naidis, V. A. Panov, B. M. Smirnov, and E. E. Son, Plasma Sources Sci. Technol. 27, 045005 (2018).

  24. N. Yu. Babaeva, D. V. Tereshonok, and G. V. Naidis, J. Phys.: Conf. Ser. 774, 012151 (2016).

  25. M. Baeva, A. Bösel, J. Ehlbeck, and D. Loffhagen, Phys. Rev. E 85, 056404 (2012).

  26. B. M. Smirnov, Properties of Gas-Discharge Plasma (Izd. Politekhnicheskogo Univ., St. Petersburg, 2010) [in Russian].

  27. X.-M. Zhu and Y.-K. Pu, J. Phys. D: Appl. Phys. 43, 015204 (2010).

  28. A. Bogaerts, R. Gijbels, and J. Vlcek, J. Appl. Phys. 84, 121 (1998).

    Article  ADS  Google Scholar 

  29. G. M. Petrov, J. L. Giuliani, and A. Dasgupta, J. Appl. Phys. 91, 2662 (2002).

    Article  ADS  Google Scholar 

  30. V. W. Gaens and A. Bogaerts, J. Phys. D: Appl. Phys. 46, 275201 (2013).

  31. P. Tian and M. J. Kushner, Plasma Sources Sci. Technol. 24, 034017 (2015).

  32. Yu. V. Yurgelenas, Comput. Math. Math. Phys. 50, 1350 (2010).

    Article  MathSciNet  Google Scholar 

  33. V. S. Kurbanismailov, O. A. Omarov, G. B. Ragimkhanov, and D. V. Tereshonok, Tech. Phys. Lett. 43, 853 (2017).

    Article  ADS  Google Scholar 

  34. V. S. Kurbanismailov, O. A. Omarov, G. B. Ragimkhanov, and D. V. Tereshonok, EPL 123, 45001 (2018).

    Article  ADS  Google Scholar 

  35. V. S. Kurbanismailov, O. A. Omarov, G. B. Ragimkhanov, and D. V. Tereshonok, Tech. Phys. Lett. 45, 4 (2019).

    Article  ADS  Google Scholar 

  36. V. S. Kurbanismailov, O. A. Omarov, G. B. Ragimkhanov, M. H. Gadjiev, M. G. Bairkhanova, and A. J. Kattaa, Plasma Phys. Rep. 37, 1166 (2011).

    Article  ADS  Google Scholar 

  37. Yu. P. Raizer, Gas Discharge Physics (ID Intellekt, Dolgoprudnyi, 2009; Springer, Berlin, 1997).

Download references

Funding

This work was partially supported by the Russian Foundation for Basic Research, grant (no. 18-08-00075a.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Ragimkhanov.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurbanismailov, V.S., Ragimkhanov, G.B., Tereshonok, D.V. et al. Formation of a Nanosecond Discharge in Argon at Atmospheric Pressure Under Gas Pre-Ionization Conditions. Plasma Phys. Rep. 47, 80–85 (2021). https://doi.org/10.1134/S1063780X21010086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X21010086

Keywords:

Navigation