Skip to main content
Log in

Instability of Dust–Acoustic Waves in Plasmas with Two-Temperature Nonthermal Ions

  • DUSTY PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract—

Theoretical and numerical investigations are carried out for the instability of the dust–acoustic waves (DAWs) under the transverse perturbation in a magnetized dusty plasma with two-temperature nonthermal ions. By the reductive perturbation technique, the Zakharov–Kuznetsov (ZK) equation and modified ZK equation of the DAWs are derived. Under the higher-order transverse perturbations, the instability growth rate of the soliton solutions of the ZK equations is studied. It is found that the most unstable wave mode exists in system. It is also noted that solitary waves are unstable when the ratio of the perturbation wave length to solitary wave width in the experimental coordinate is larger than a certain critical value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. D. I. Zhukhovitskii, Phys. Rev. E 92, 023108 (2015).

  2. G. Banerjee and S. Maitra, Phys. Plasmas 24, 073702 (2017).

  3. E. M. Abulwafa, A. M. Elhanbaly, A. A. Mahmoud, and A. F. Al-Araby, Phys. Plasmas 24, 053704 (2017).

  4. M. S. Alam, M. G. Hafez, M. R. Talukder, and M. Hossain Ali, Phys. Plasmas 24, 103705 (2017).

  5. Y. Ghai, N. S. Saini, and B. Eliasson, Phys. Plasmas 25, 013704 (2018).

  6. F. Hadi and Ata-ur-Rahman, Phys. Plasmas 25, 063704 (2018).

  7. K. Singh, P. Sethi, and N. S. Saini, Phys. Plasmas 25, 033705 (2018).

  8. S. Mahmood and Q. Haque, Phys. Plasmas 24, 093705 (2017).

  9. S. Kumar, S. K. Tiwari, and A. Das, Phys. Plasmas 24, 033711 (2017).

  10. T. Deka, A. Boruah, S. K. Sharma, and H. Bailung, Phys. Plasmas 24, 093706 (2017).

  11. B. Liu, J. Goree, T. M. Flanagan, A. Sen, S. K. Tiwari, G. Ganguli, and C. Crabtree, Phys. Plasmas 25, 113701 (2018).

  12. S. I. Kopnin, I. N. Kosarev, S. I. Popel, and M. Y. Yu, Plasma Phys. Rep. 31, 198 (2005).

    Article  ADS  Google Scholar 

  13. T. V. Losseva, S. I. Popel, and A. P. Golub’, Plasma Phys. Rep. 38, 729 (2012).

    Article  ADS  Google Scholar 

  14. E. E. Behery, Phys. Rev. E 94, 053205 (2016).

  15. A. A. Galeev, R. Z. Sagdeev, Y. S. Sigov, V. D. Shapiro, and V. I. Shevchenko, Sov. J. Plasma Phys. 1, 5 (1975).

    ADS  Google Scholar 

  16. V. E. Zakharov and A. B. Shabat, Sov. Phys.–JETP 34, 62 (1972).

    ADS  Google Scholar 

  17. E. A. Kuznetsov, A. M. Rubenchik, and V. E. Zakharov, Phys. Rep. 142, 103 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  18. V. I. Petviashvili, Phys. D 3, 329 (1981).

    Article  Google Scholar 

  19. R. L. Mace and M. A. Hellberg, Phys. Plasmas 8, 2649 (2001).

    Article  ADS  Google Scholar 

  20. M. M. Lin and W. S. Duan, Phys. Plasmas 11, 5710 (2004).

    Article  ADS  Google Scholar 

  21. W. M. Moslem, S. Ali, P. K. Shukla, X. Y. Tang, and G. Rowlands, Phys. Plasmas 14, 082308 (2007).

  22. M. Sadiq, S. Ali, and R. Sabry, Phys. Plasmas 16, 013706 (2009).

  23. A. S. Bains, M. Tribeche, N. S. Saini, and T. S. Gill, Phys. Plasmas 18, 104503 (2011).

  24. M. Shalaby, S. K. El-Labany, R. Sabry, and L. S. El-Sherif, Phys. Plasmas 18, 062305 (2011).

  25. M. F. Bashir, E. E. Behery, and W. F. El-Taibany, Phys. Plasmas 22, 062112 (2015).

  26. M. Shahmansouri and A. A. Mamun, Phys. Plasmas 25, 073709 (2015).

  27. S. Munro and E. J. Parkes, J. Plasma Phys. 70, 543 (2004).

    Article  ADS  Google Scholar 

  28. E. J. Parkes and S. Munro, J. Plasma Phys. 71, 695 (2005).

    Article  ADS  Google Scholar 

  29. S. Munro and E. J. Parkes, J. Plasma Phys. 62, 305 (1999).

    Article  ADS  Google Scholar 

  30. S. Munro and E. J. Parkes, J. Plasma Phys. 64, 411 (2000).

    Article  ADS  Google Scholar 

  31. D. N. Gao, X. Qi, X. R. Hong, X. Yang, W. S. Duan, and L. Yang, J. Plasma Phys. 80, 425 (2014).

    Article  ADS  Google Scholar 

  32. M. Emamuddin, S. Yasmin, and A. A. Mamun, Phys. Plasmas 20, 043705 (2013).

  33. F. Verheest and M. A. Hellberg, Phys. Plasmas 17, 023701 (2010).

  34. S. K. El-Labany, E. F. El-Shamy, and M. Shokry, Phys. Plasmas 17, 113706 (2010).

  35. M. S. Alam, M. G. Hafez, M. R. Talukder, and M. Hossain Ali, Phys. Plasmas 24, 103705 (2017).

  36. J. Borhanian and M. Shahmansouri, Phys. Plasmas 20, 013707 (2013).

  37. D. Dorranian and A. Sabetkar, Phys. Plasmas 19, 013702 (2012).

  38. K. Roy, T. Saha, P. Chatterjee, and M. Tribeche, Phys. Plasmas 19, 042113 (2012).

  39. A. Sabetkar and D. Dorranian, J. Theor. Appl. Phys. 9, 141 (2015).

    Article  ADS  Google Scholar 

  40. S. V. Vladimirov, V. N. Tsytovich, S. I. Popel, and F. Kh. Khakimov, Modulational Interactions in Plasmas (Kluwer Academic, Dordrecht, 1995).

    Book  Google Scholar 

  41. M. Amina, S. A. Ema, and A. A. Mamun, Chin. J. Phys. 55, 619 (2017).

    Article  Google Scholar 

  42. A. R. Seadawy and D. C. Lu, Results Phys. 6, 590 (2016).

    Article  ADS  Google Scholar 

  43. W. F. El-Taibany, M. Wadati, and R. Sabry, Phys. Plasmas 14, 032304 (2007).

  44. M. Y. Yu and H. Luo, Phys. Plasmas 15, 024504 (2008).

  45. A. E. Dubinov, Plasma Phys. Rep. 35, 991 (2009).

    Article  ADS  Google Scholar 

  46. W. S. Duan, Europhys. Lett. 66, 192 (2004).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Young Teachers Research Fund of Lanzhou City University (no. LZCU-QN2018-06) and the Doctoral Research Fund of Lanzhou City University (no. LZCU-BS2018-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.-N. Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, DN., Yue, JB., Wu, JP. et al. Instability of Dust–Acoustic Waves in Plasmas with Two-Temperature Nonthermal Ions. Plasma Phys. Rep. 47, 48–53 (2021). https://doi.org/10.1134/S1063780X21010062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X21010062

Keywords:

Navigation