Skip to main content
Log in

Investigation of the Dynamics of a Microstructured Spark Channel in Air in the “Tip (Anode)–Plane” Geometry at the Stage of Radial Expansion

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The results of investigations of a spark discharge in air in the gap between the tip (anode) and a 1.5‑mm-long plane are presented. It is shown that, after breakdown, the discharge develops in the form of a beam of individual microchannels that close the discharge gap, then, after 20–30 ns, a continuous outer boundary of the channel forms and its radial expansion begins. The electron concentration at this moment reaches its maximum value at the level of 2 × 1019 cm—3. It was found that, starting from 60 ns, a cylindrical shock wave departs from the channel boundary. With time, the difference in the radii of the shock wave and the channel increases, resulting in the formation of a radial structure in the form of a highly conductive internal channel, separated from the shock wave by an intermediate shell. A computational and theoretical model is proposed to describe the dynamics of the spark channel expansion from the moment of the formation of a solid outer boundary, and a satisfactory agreement between the calculations and experimental data is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. Starikovskaia, J. Phys. D: Appl. Phys. 47, 353001 (2014).

  2. N. A. Popov, Plasma Sources Sci. Technol. 20, 045002 (2011).

  3. N. L. Aleksandrov, S. V. Kindysheva, I. N. Kosarev, S. M. Starikovskaia, and A. Y. Starikovskii, Proc. Combust. Inst. 32, 205 (2009).

    Article  Google Scholar 

  4. G. Fridman, G. Friedman, A. Gutsol, A. B. Shekhter, V. N. Vasilets, and A. Fridman, Plasma Processes Polym. 5, 503 (2008).

    Article  Google Scholar 

  5. H. J. Lee, C. H. Shon, Y. S. Kim, S. Kim, G. C. Kim, and M. G. Kong, New J. Phys. 11, 115026 (2009).

  6. E. E. Son and D. V. Tereshonok, EPL 99, 15002 (2012).

    Article  ADS  Google Scholar 

  7. A. Yu. Starikovskii, A. A. Nikipelov, M. M. Nudnova, and D. V. Roupassov, Plasma Sources Sci. Technol. 18, 034015 (2009).

  8. V. V. Golub’, A. S. Saveliev, V. A. Sechenov, E. E. Son, and D. V. Tereshonok, High Temp. 48, 903 (2010).

    Article  Google Scholar 

  9. I. S. Abramson, N. M. Hegechkori, S. I. Drabkina, and S. L. Mandelstam, Zh. Eksp. Teor. Fiz. 17, 10 (1947).

    Google Scholar 

  10. S. I. Drabkina, Zh. Eksp. Teor. Fiz. 21, 4 (1951).

    Google Scholar 

  11. E. Marode, F. Bastien, and M. Bakker, J. Appl. Phys. 50, 140 (1979).

    Article  ADS  Google Scholar 

  12. Yu. P. Raizer, Gas Discharge Physics (ID Intellekt, Dolgoprudnyi, 2009; Springer, Berlin, 1997).

  13. V. S. Kurbanismailov, O. A. Omarov, G. B. Ragimkhanov, Kh. M. Abakarova, and Ali Rafid Abbas Ali, Plasma Phys. Rep. 42, 687 (2016).

    Article  ADS  Google Scholar 

  14. O. A. Omarov, V. S. Kurbanismailov, M. A. Arslanbekov, M. Kh. Gadzhiev, G. B. Ragimkhanov, and Ali J. G. Al-Shatravi, Plasma Phys. Rep. 38, 22 (2012).

    Article  ADS  Google Scholar 

  15. V. I. Derzhiev, S. A. Maiorov, and S. I. Yakovlenko, Sov. J. Plasma Phys. 13, 603 (1987).

    Google Scholar 

  16. K. I. Almazova, A. N. Belonogov, V. V. Borovkov, E. V. Gorelov, I. V. Morozov, A. A. Tren’kin, and S. Yu. Kharitonov, Tech. Phys. 63, 801 (2018).

    Article  Google Scholar 

  17. K. I. Almazova, A. N. Belonogov, V. V. Borovkov, E. V. Gorelov, I. V. Morozov, A. A. Tren’kin, and S. Yu. Kharitonov, Tech. Phys. 64, 61 (2019).

    Article  Google Scholar 

  18. A. A. Tren’kin, K. I. Almazova, A. N. Belonogov, V. V. Borovkov, E. V. Gorelov, I. V. Morozov, and S. Yu. Kharitonov, Tech. Phys. 64, 470 (2019).

    Article  Google Scholar 

  19. A. A. Trenkin, K. I. Almazova, A. N. Belonogov, et al., in Pulsed Lasers and Laser Applications “AMPL-2019”: Abstracts of XIV International Conference, Tomsk, 2019, p. 139.

  20. E. V. Parkevich, M. A. Medvedev, A. I. Khirianova, G. V. Ivanenkov, A. S. Selyukov, A. V. Agafonov, K. V. Shpakov, and A. V. Oginov, Plasma Sources Sci. Technol. 12, 125007 (2019).

  21. E. V. Parkevich, G. V. Ivanenkov, M. A. Medvedev, A. I. Khirianova, A. S. Selyukov, A. V. Agafonov, A. R. Mingaleev, T. A. Shelkovenko, and S. A. Pikuz, Plasma Sources Sci. Technol. 27, 11LT01 (2018).

  22. K. I. Almazova, A. N. Belonogov, V. V. Borovkov, V. S. Kurbanismailov, Z. R. Khalikova, G. B. Ragimkhanov, D. V. Tereshonok, and A. A. Trenkin, EPL 130, 65002 (2020).

    Article  ADS  Google Scholar 

  23. K. I. Almazova, A. N. Belonogov, V. V. Borovkov, V. S. Kurbanismailov, G. B. Ragimkhanov, A. A. Tren’kin, D. V. Tereshonok, and Z. R. Khalikova, Tech. Phys. Lett. 46, 737 (2020).

    Article  ADS  Google Scholar 

  24. K. I. Almazova, A. N. Belonogov, V. V. Borovkov, Z. R. Khalikova, G. B. Ragimkhanov, D. V. Tereshonok, and A. A. Trenkin, Plasma Sources Sci. Technol., 2020 (in press). https://doi.org/10.1088/1361-6595/aba8cc

  25. A. Lo, A. Cessou, C. Lacour, B. Lecordier, P. Boubert, D. A. Xu, C. O. Laux, and P. V. Ervisch, Plasma Sources Sci. Technol. 26, 045012 (2017).

  26. N. Minesi, S. Stepanyan, P. Mariotto, G. D. Stancu, and C. O. Laux, Plasma Sources Sci. Technol., 2020 (in press). https://doi.org/10.1088/1361-6595/ab94d3

  27. P. Stritzke, I. Sander, and H. Raether J. Phys. D: Appl. Phys. 10, 2285 (1977).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research within the framework of scientific project no. 20-08-01043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Ragimkhanov.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almazova, K.I., Belonogov, A.N., Borovkov, V.V. et al. Investigation of the Dynamics of a Microstructured Spark Channel in Air in the “Tip (Anode)–Plane” Geometry at the Stage of Radial Expansion. Plasma Phys. Rep. 47, 73–79 (2021). https://doi.org/10.1134/S1063780X21010025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X21010025

Keywords:

Navigation