Skip to main content
Log in

Specific Features of the Erosion Wear of Coatings with a Ti1 – xCx–Diamond-Like Carbon Structure Forming Pair (х = 0.2, 0.8)

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The wear-resistant coatings formed by the vacuum ion-plasma codeposition of titanium and carbon have been studied in this work. Single-layer and multilayer coatings with the systematically repeated [(Ti1 – xCx/a-C] pair are deposited onto P8M5 and 18KhN10T steel substrates. The highest erosion resistance is inherent in the multilayer [Ti0.2C0.8/a-C]40 coating with a layer thickness of 25 nm. The erosion wear rate of this coating is 1.6–1.8 times lower than the wear rate of the single-layer а-С and Ti0.2C0.8 coatings. The wear of [Ti0.2C0.8/a-C]40 occurs layer by layer without crumbling of individual square sections of the coating, thus increasing its service life. The interphase boundaries in the Ti0.2C0.8 composite layer, as well as the Ti1 ‒ xCx → а-С interface boundaries, serve as a barrier for the propagation of microcracks, decreasing the probability of macrocracking, which destroys the continuity of a coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. N. Kumar, G. Natarajan, R. Pandian, A. Bahuguna, S. K. Srivastava, T. R. Ravindran, S. Rajagopalan, S. Dash, A. K. Tyagi, R. Dumpala, and M. S. Rao Ramachandra, “Microstructure and phase composition dependent tribological properties of TiC/a–C nanocomposite thin films,” Surf. Coat. Technol. 258, 557–565 (2014).

    Article  CAS  Google Scholar 

  2. A. B. Vladimirov, S. A. Plotnikov, I. Sh. Trakhtenberg, A. P. Rubshtein, and E. G. Volkova, “Nanocomposite films prepared by arc-plasma deposition of titanium and carbon,” Prot. Met. Phys. Chem. Surf. 51, 230–233 (2015).

    Article  CAS  Google Scholar 

  3. I. Sh. Trakhtenberg, N. V. Gavrilov, D. R. Emlin, S. A. Plotnikov, A. B. Vladimirov, E. G. Volkova, and A. P. Rubshtein, “Nanocomposite vacuum-Arc TiC/a‑C:H coatings prepared using an additional ionization of acetylene,” Phys. Met. Metallogr. 115, 723–729 (2014).

    Article  Google Scholar 

  4. A. P. Rubshtein, A. B. Vladimirov, Yu. V. Korkh, Y. S. Ponosov, and S. A. Plotnikov, “The composition, structure and surface properties of the titanium-carbon coatings prepared by PVD technique,” Surf. Coat. Technol. 309, 680–686 (2017).

    Article  CAS  Google Scholar 

  5. U. Jansson and E. Lewin, “Sputter deposition of transition-metal carbide films—a critical review from a chemical perspective,” Thin Solid Films 536, 1–24 (2013).

    Article  CAS  Google Scholar 

  6. V. M. Finkel’, Physical Basics of Inhibition of Destruction (Metallurgiya, Moscow, 1977), p. 348 [in Russian].

    Google Scholar 

  7. A. N. Panckow, J. Steffenhagen, B. Wegener, L. Dubner, and F. Lierath, “Application of novel vacuum-arc ion-plating technologies for the design of advanced wear resistant coatings,” Surf. Coat. Technol. 138, 71–76 (2001).

    Article  CAS  Google Scholar 

  8. H. Gleiter, “Nanostructured materials: basic concepts and microstructure,” Acta Mater. 48, 1–29 (2000).

    Article  CAS  Google Scholar 

  9. A. S. Vereshchaka and A. A. Vereshchaka, “Improving the tool efficiency by controlling the composition, structure and properties of coatings,” Uprochnyayushchie Tekhnologii i Pokrytiya, No. 9, 9–18 (2005).

    Google Scholar 

  10. J. B. Cai, X. L. Wang, W. Q. Bai, D. H. Wang, C. D. Gu, and J. P. Tu, “Microstructure, mechanical and tribological properties of a-C/a-C:Ti nanomultilayer film,” Surf. Coat. Technol. 232, 403–411 (2013).

    Article  CAS  Google Scholar 

  11. R. Chen, J. P. Tu, D. G. Liu, Y. L. Yu, S. X. Qu, and C. D. Gu, “Structural and mechanical properties of TaN/a-CNx multilayer films,” Surf. Coat. Technol. 206, 2242–2248 (2012).

    Article  CAS  Google Scholar 

  12. B. Bouaouina, A. Besnard, S. E. Abaidia, and F. Haid, “Residual stress, mechanical and microstructure properties of multilayer Mo2N/CrN coating produced by R.F Magnetron discharge,” Appl. Surf. Sci. 395, 117–121 (2017).

    Article  CAS  Google Scholar 

  13. V. C. Teles, J. D. B. Mello, and W. M. Silva, “Abrasive wear of multilayered/gradient CrAlSiN PVD coatings: Effect of interface roughness and of superficial flaws,” Wear 376–377, 1691–1701 (2017).

    Article  Google Scholar 

  14. W. Q. Bai, L. L. Li, X. L. Wang, F. F. He, D. G. Liu, G. Jin, and J. P. Tu, “Effects of Ti content on microstructure, mechanical and tribological properties of Ti-doped amorphous carbon multilayer films,” Surf. Coat. Technol. 266, 70–78 (2015).

    Article  CAS  Google Scholar 

  15. P. Wiecinski, J. Smolik, H. Garbacz, J. Bonarski, A. Mazurkiewicz, and K. J. Kurzydłowski, “Microstructure and properties of metal/ceramic and ceramic/ceramic multilayer coatings on titanium alloy Ti6Al4V,” Surf. Coat. Technol. 309, 709–718 (2017).

    Article  CAS  Google Scholar 

  16. D. Kumar, N. Kumar, S. Kalaiselvam, S. Dash, and R. Jayave, “Wear resistant super-hard multilayer transition metal-nitride coatings,” Surf. Interfaces. 7, 74–82 (2017).

    Article  Google Scholar 

  17. S. Ghasemi, A. Shanaghi, and P. K. Chu, “Nano mechanical and wear properties of multi-layer Ti/TiN coatings deposited on Al 7075 by high-vacuum magnetron sputtering,” Thin Solid Films 638, 96–104 (2017).

    Article  CAS  Google Scholar 

  18. A. Vereschaka, V. Tabakov, S. Grigoriev, A. Aksenenko, N. Sitnikov, G. Oganyan, A. Seleznev, S. l. Shevchenko, “Effect of adhesion and the wear-resistant layer thickness ratio on mechanical and performance properties of ZrN–(Zr,Al,Si)n coatings,” Surf. Coat. Technol. 357, 218–234 (2019).

    Article  CAS  Google Scholar 

  19. X. Sui, J. Liu, S. Zhang, J. Yang, and J. Hao, “Microstructure, mechanical and tribological characterization of CrN/DLC/Cr-DLC multilayer coating with improved adhesive wear resistance,” Appl. Surf. Sci. 439, 24–32 (2018).

    Article  CAS  Google Scholar 

  20. ISO 14577-1:2002, Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters—Part 1: Test Method.

  21. E. Martinez, J. L. Andujar, M. C. Polo, J. Esteve, J. Robertson, and W. I. Milne, “Study of the mechanical properties of tetrahedral amorphous carbon films by nanoindentation and nanowear measurements,” Diamond Relat. Mater. 10, 145–152 (2001).

    Article  CAS  Google Scholar 

  22. A. P. Rubshtein, I. Sh. Trakhtenberg, V. A. Yugov, A. B. Vladimirov, S. A. Plotnikov, and Yu. S. Ponosov, “Temperature effect on the formation of a relief of diamond-like carbon coatings and its modification by ion bombardment,” Phys. Met. Metallogr. 102, 626–631 (2006).

    Article  Google Scholar 

  23. W. G. Cui, Q. B. Lai, L. Zhang, and F. M. Wang, “Quantitative measurements of sp3 content in DLC films with Raman spectroscopy,” Surf. Coat. Technol. 205, 1995–2002 (2010).

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed within the state task of the Ministry of Education and Science of Russia (project “Function” no. AAAA-A19-119012990095-0) under partial financial support from the Russian Foundation for Basic Research (project no. 20-48-660065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Rubshtein.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubshtein, A.P., Vladimirov, A.B. & Plotnikov, S.A. Specific Features of the Erosion Wear of Coatings with a Ti1 – xCx–Diamond-Like Carbon Structure Forming Pair (х = 0.2, 0.8). Phys. Metals Metallogr. 121, 1203–1210 (2020). https://doi.org/10.1134/S0031918X20120121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20120121

Keywords:

Navigation