Skip to main content
Log in

Transformation of the Structure and Parameters of Phases during Aging of a Titanium Ti–10V–2Fe–3Al Alloy and Their Relation to Strengthening

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract—Scanning electron microscopy, electron microprobe and X-ray diffraction analyses, and durometry are used to study changes in the structure, phase composition, and hardness of a quenched titanium Ti‒10V–2Fe–3Al alloy in the course of aging at 500°С for 2–32 h. A complex analysis of changes in the lattice parameters of the primary and secondary α phases formed in the alloy during aging has been performed for the first time using full-profile X-ray diffraction analysis. Aging-induced changes in the hardness of the alloy are shown to be determined both by the sizes of formed secondary α-phase particles and changes in the alloying of the matrix β solid solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. D. Cotton, R. D. Briggs, R. R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, and J. C. Fanning, “State of the art in beta titanium alloys for airframe applications,” JOM 67, No. 6, 1281–1303 (2015).

    Article  CAS  Google Scholar 

  2. T. W. Duerig, G. T. Terlinde, and J. C. Williams, “Phase transformations and tensile properties of Ti–10V–2Fe–3Al,” Metall. Trans. A 11, 1980–1987 (1980).

    Article  Google Scholar 

  3. A. G. Illarionov, A. V. Korelin, A. A. Popov, S. M. Illarionova, and O. A. Elkina, “Formation of the structure, phase composition, and properties in high-strength titanium alloy upon isothermal and thermomechanical treatment,” Phys. Met. Metallogr. 119, No. 8, 780–788 (2018).

    Article  CAS  Google Scholar 

  4. O. P. Shaboldo, Ya. M. Vitorskii, V. V. Sagaradze, N. L. Pecherkina, and M. A. Skotnikova, “Formation of the structure and properties of β-type titanium alloy upon thermomechanical treatment,” Phys. Met. Metallogr. 118, No. 1, 75–80 (2017).

    Article  CAS  Google Scholar 

  5. A. G. Illarionov, A. V. Trubochkin, A. M. Shalaev, S. M. Illarionova, and A. A. Popov, “Effect of microalloying, with rem inclusively, on the structure, phase composition and properties of (α + β)-titanium alloy,” Met. Sci. Heat Treat. 57, 719–725 (2016).

    Article  CAS  Google Scholar 

  6. R. R. Boyer and G. W. Kuhlman, “Processing properties relationships of Ti–10V–2Fe–3Al,” J. Metall. Trans. A 18, 2095–2103 (1987).

    Article  Google Scholar 

  7. E. W. Collings, The Physical Metallurgy of Titanium Alloys (Park, Ohio, 1984), p. 261.

    Google Scholar 

  8. T. Li, M. Ahmed, G. ShiR. Sha, G. Casillas, H.‑W. Yen, Y. Wang, E. V. Pereloma, and J. M. Cairney, “The influence of partitioning on the growth of intragranular α in near-β Ti alloys,” J. Alloys Compd. 643, 212–222 (2015).

    Article  CAS  Google Scholar 

  9. C. Y. Wang, L. W. Yang, Y. W. Cui, and M. T. Pérez-Prado, “High throughput analysis of solute effects on the mechanical behavior and slip activity of beta titanium alloys,” Mater. Des. 137, 371–383 (2018).

    Article  CAS  Google Scholar 

  10. C. Zou, J. Li, W. Y. Wang, Y. Zhang, B. Tang, H. Kou, H. Wang, J. Wang, D. Xu, and D. Lin, “Revealing the local lattice strains and strengthening mechanisms of Ti alloys,” Comput. Mater. Sci. 152, 169–177 (2018).

    Article  CAS  Google Scholar 

  11. Y. Pan, Q. Sun, L. Xiao, X. Ding, and L. Juan, “Plastic deformation behavior and microscopic mechanism of metastable Ti–10V–2Fe–3Al alloy single crystal pillars orientated to ❬011❭β in submicron scales Part II: Phase transformation dependence of size effect and deformation mechanism,” Mater. Sci. Eng., A 743, 804–810 (2019).

    Article  CAS  Google Scholar 

  12. B. Gault, M. P. Moody, S. P. Cairney, and S. P. Ringer, Atom Probe Microscopy (Springer Science & Business Media, 2012), p. 396.

    Book  Google Scholar 

  13. D. B. Williams and C. B. Carter, Transmission Electron Microscopy: Spectrometry. IV (Plenum Press, New York, 1996), p. 610.

    Book  Google Scholar 

  14. TOPAS. v3, General Profile and Structure Analysis Software for Powder Diffraction Data. User’s manual. Karlsruhe, Germany: Bruker AXS, 2005.

  15. I. C. Dragomir, D. S. Li, G. A. Castello-Branco, Snyder R. L. Garmestani, G. Ribarikd, and T. Ungar, “Evolution of dislocation density and character in hot rolled titanium determined by X-ray diffraction,” Mater. Charact. 55, 66–74 (2005).

    Article  CAS  Google Scholar 

  16. P. Barriobero-Vita, G. Requena, F. Warchomicka, A. Stark, N. Shell, and T. Buslaps, “Phase transformation kinetics during continuous heating of a β-quenched Ti–10V–2Fe–3Al alloy,” J. Mater. Sci. 50, 1412–1426 (2015).

    Article  Google Scholar 

  17. F. V. Vodolazskii, A. G. Illarionov, A. A. Popov, M. O. Leder, A. V. Zhloba, and A. V. Skidan, “A study of isothermal decomposition of β-solid solution in titanium alloy VST2,” Met. Sci. Heat Treat. 57, 458–462 (2015).

    Article  CAS  Google Scholar 

  18. P. Li, T. SunX. Zhang, H. Zhang, D. Wang, Q. Sun, L. Xiao, and J. Sun, “Secondary hardening behavior in Ti alloy,” Mater. Sci. Eng., A 759, 640–647 (2019).

    Article  CAS  Google Scholar 

  19. V. Uvarov and I. Popov, “Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials,” Mater. Charact. 85, 111–123 (2013).

    Article  CAS  Google Scholar 

  20. M. S. Kalienko, A. V. Volkov, and A. V. Zhelnina, “Use of full-profile X-ray analysis for estimation of the dispersity of the secondary alpha phase in high-strength titanium alloys,” Crystallogr. Rep. 65, 412–416 (2020).

    Article  CAS  Google Scholar 

  21. F. W. Chen, G. Xu, X. Y. Zhang, K-C. Zhou, and Y. Cui, “Effect of α morphology on the diffusional β ↔ α transformation in Ti–55531 during continuous heating: Dissection by dilatometer test, microstructure observation and calculation,” J. Alloys Compd. 702, 352–365 (2017).

    Article  CAS  Google Scholar 

  22. U. Tsvikker, Titanium and Its Alloys (Mir, Moscow, 1979) [in Russian].

  23. G. Shao, A. P. Miodownik, and P. Tsakiropoulos, “ω‑phase formation in V–Al and Ti–Al–V alloys,” Philos. Mag. A 71, No. 6, 1389–1408 (1995).

    Article  CAS  Google Scholar 

  24. A. Kilmametov, Yu. Ivanisenko, B. Straumal, A. A. Mazilkin, H. Hahn, A. S. Gomakova, M. J. Kriegel, O. B. Fabrichnaya, and D. Rafaia, “Transformations of α' martensite in Ti–Fe alloys under high pressure torsion,” Scr. Mater. 136, 46–49 (2017).

    Article  CAS  Google Scholar 

  25. G. Gottshtain, Physicochemical Basics of Materials Science (Binom, Moscow, 2014) [in Russian].

    Google Scholar 

  26. M. Ahmed, D. Wexler, G. Casillas, O. M. Ivasishin, and E. Peraloma, “The influence of β phase stability on deformation mode and compressive mechanical properties of Ti–10V–2Fe–3Al alloy,” Acta Mater. 84, 124–154 (2015).

  27. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition, Structure, Properties. Handbook (VILS, Moscow, 2009) [in Russian].

    Google Scholar 

Download references

Funding

The study was supported by the Russian Federation Government Program no. 211 for supporting leading Russian universities, which is aimed at enhancing their competitiveness, project no. 02.А03.21.0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Illarionov.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhelnina, A.V., Kalienko, M.S., Illarionov, A.G. et al. Transformation of the Structure and Parameters of Phases during Aging of a Titanium Ti–10V–2Fe–3Al Alloy and Their Relation to Strengthening. Phys. Metals Metallogr. 121, 1220–1226 (2020). https://doi.org/10.1134/S0031918X20120133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20120133

Keywords:

Navigation