Skip to main content
Log in

Effect of Mn on the Phase Composition and Properties of Al–Cu–Y–Zr Alloy

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effect of manganese on the microstructure, phase composition, and mechanical properties of the heat-strengthened deformed Al–5.5Cu–2.0Y–0.3Zr alloy has been studied in this work. The structure of the cast alloy was shown to contain a quaternary phase enriched in copper, manganese, and yttrium with a Cu/Mn/Y ratio of 4/2/1, which corresponds to the chemical compound Al25Cu4Mn2Y. The maximum strengthening of the ingot was achieved by aging after quenching at 210°C for 5 h. Three types of precipitates, Al20Cu2Mn3 and Al3(Zr,Y), were formed in the heat-treated structure in the course of homogenization at 605°C. The size of Al3(Zr,Y) particles was 30–50 nm. The Al20Cu2Mn3 phase had a longitudinal size of 200–250 nm and a transverse size of 150–200 nm. The disc-shaped precipitates of the θ''(Al2Cu) metastable phase with a diameter of 80–200 nm and a thickness of about 5 nm formed upon aging. After rolling and annealing for 1 and 2 h, the hardness was maximum at 150°C. This was explained by a predominance of aging over softening, which retards the growth of dispersoids of Al20Cu2Mn3 and Al3(Zr,Y) phases and dispersed Al8Cu4Y and (Al,Cu)11Y3 particles of crystallization origin. At 210°C, the softening of deformed alloy prevails over the effect of aging and as a result, the hardness decreases slightly. The addition of manganese makes it possible to retain a significantly high hardness in the studied alloy at annealing temperatures up to 550°С and to increase the temperature of the onset of recrystallization to 350–400°С. After rolling followed by annealing at 150°C the alloy was shown to possess high mechanical properties: σ0.2 = 330–334 MPa, σu = 374 MPa, and δ = 3.6–5.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. GOST 1583–93. Aluminum Casting Alloys (IPK Izd-vo standartov, Minsk, 2000) [in Russian].

  2. GOST 4784–2019. Aluminum and Wrought Aluminum Alloys. Brands (IPK Izd-vo standartov, 2019) [in Russian].

  3. V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys (Alcoa Technical Center, PA, 2007) p. 530.

    Book  Google Scholar 

  4. I. I. Novikov, Hot Brittleness of Non-Ferrous Metals and Alloys (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  5. V. S. Zolotorevskiy and A. V. Pozdniakov, “Determining the hot cracking index of Al–Si–Cu–Mg casting alloys calculated using the effective solidification range,” Int. J. Cast Met. Res. 27, No. 4, 193–198 (2014).

    Article  Google Scholar 

  6. V. S. Zolotorevskiy, A. V. Pozdniakov, and A. Yu. Churyu-mov, “Search for promising compositions for developing new multiphase casting alloys based on Al–Cu–Mg matrix using thermodynamic calculations and mathematic simulation,” Phys. Met. Metallogr. 113, No. 11, 1052–1060 (2012).

    Article  Google Scholar 

  7. A. V. Pozdnyakov, A. A. Osipenkova, D. A. Popov, S. V. Makhov, and V. I. Napalkov, “Effect of low additions of Y, Sm, Gd, Hf and Er on the structure and hardness of alloy Al–0.2% Zr–0.1% Sc,” Met. Sci. Heat Treat. 58, No. 9–10, 537–542 (2017).

    Article  CAS  Google Scholar 

  8. A. V. Pozdniakov, A. A. Aytmagambetov, S. V. Makhov, and V. I. Napalkov, “Effect of impurities of Fe and Si on the structure and strengthening upon annealing of the Al–0.2% Zr–0.1% Sc alloys with and without Y additive,” Phys. Met. Metallogr. 118, No. 5, 479–484 (2017).

    Article  CAS  Google Scholar 

  9. A. V. Pozdnyakov and R. Yu. Barkov, “Effect of impurities on the phase composition and properties of a new alloy of the Al–Y–Er–Zr–Sc system,” Metallurgist 63, Nos. 1–2, 79–86 (2019).

    Article  CAS  Google Scholar 

  10. A. V. Pozdniakov, R. Yu. Barkov, A. S. Prosviryakov, A. Yu. Churyumov, I. S. Golovin, and V. S. Zolotorevskiy, “Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al–Er–Y alloy,” J. Alloys Compd. 765, 1–6 (2018).

    Article  CAS  Google Scholar 

  11. A. V. Pozdniakov and R. Yu. Barkov, “Microstructure and mechanical properties of novel Al–Y–Sc alloys with high thermal stability and electrical conductivity,” J. Mater. Sci. Technol. 36, 1–6 (2020).

    Article  Google Scholar 

  12. A. V. Pozdniakov, V. Yarasu, R. Yu. Barkov, O. A. Yakov-tseva, S. V. Makhov, and V. I. Napalkov, “Microstructure and mechanical properties of novel Al–Mg–Mn–Zr–Sc–Er alloy,” Mater. Lett. 202, 116–119 (2017).

    Article  CAS  Google Scholar 

  13. M. Song, K. Du, Z. Y. Huang, H. Huang, Z. R. Nie, and H. Q. Ye, “Deformation-induced dissolution and growth of precipitates in an Al–Mg–Er alloy during high-cycle fatigue,” Acta Mater. 81, 409–419 (2014).

    Article  CAS  Google Scholar 

  14. H. L. Hao, D. R. Ni, Z. Zhang, D. Wang, B. L. Xiao, and Z. Y. Ma, “Microstructure and mechanical properties of Al–Mg–Er sheets jointed by friction stir welding,” Mater. Des. 52, 706–712 (2013).

    Article  CAS  Google Scholar 

  15. S. P. Wen, W. Wang, W. H. Zhao, X. L. Wu, K. Y. Gao, H. Huang, and Z. R. Nie, “Precipitation hardening and recrystallization behavior of Al–Mg–Er–Zr alloys,” J. Alloys Compd. 687, 143–151 (2016).

    Article  CAS  Google Scholar 

  16. R. Yu. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mater. Lett. 217, 135–138 (2018).

    Article  CAS  Google Scholar 

  17. M. Li, H. Wang, Z. Wei, and Z. Zhu, “The effect of Y on the hot-tearing resistance of Al–5 wt % Cu based alloy,” Mater. Des. 31, 2483–2487 (2010).

    Article  CAS  Google Scholar 

  18. N. A. Belov, A. V. Khvan, and A. N. Alabin, “Microstructure and phase composition of Al–Ce–Cu alloys in the Al-rich corner,” Mater. Sci. Forum. 519–521(Part 1), 395–400 (2006).

    Article  Google Scholar 

  19. N. A. Belov and A. V. Khvan, “The ternary Al–Ce–Cu phase diagram in the aluminum-rich corner,” Acta Mater. 55, 5473–5482 (2007).

    Article  CAS  Google Scholar 

  20. A. V. Pozdniakov and R. Y. Barkov, “Microstructure and materials characterisation of the novel Al–Cu–Y alloy,” Mater. Sci. Techol. 34, No. 12, 1489–1496 (2018).

    Article  CAS  Google Scholar 

  21. S. M. Amer, R. Y. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasibinary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121, No. 5, 476–482 (2020).

    Article  CAS  Google Scholar 

  22. A. V. Pozdnyakov, R. Yu. Barkov, Zh. Sarsenbaev, S. M. Amer, and A. S. Prosviryakov, “Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy,” Phys. Met. Metallogr. 120, No. 6, 614–619 (2019).

    Article  CAS  Google Scholar 

  23. S. M. Amer, R. Y. Barkov, and A. V. Pozdniakov, “Effect of impurities on the phase composition and properties of a wrought Al–6% Cu–4.05% Er alloy,” Phys. Met. Metallogr. 121, No. 5, 495–499 (2020).

    Article  CAS  Google Scholar 

  24. A. V. Pozdniakov, R. Yu. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019).

    Article  CAS  Google Scholar 

  25. S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, I. S. Loginova, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Technol. 36, No. 4, 453–459 (2020).

    Article  CAS  Google Scholar 

  26. S. M. Amer, O. A. Yakovtseva, I. S. Loginova, S. V. Medvedeva, A. S. Prosviryakov, A. I. Bazlov, R. Yu. Barkov, and A. V. Pozdniakov, “The phase composition and mechanical properties of the novel precipitation-strengthening Al–Cu–Er–Mn–Zr alloy,” Appl. Sci. 10, No. 15, 5345–5353 (2020).

    Article  CAS  Google Scholar 

  27. A. V. Mikhaylovskaya, A. A. Kishchik, A. D. Kotov, O. V. Rofman, and N. Yu. Tabachkova, “Precipitation behavior and high strain rate superplasticity in a novel fine-grained aluminum based alloy,” Mater. Sci. Eng., A 760, 37–46 (2019).

    Article  CAS  Google Scholar 

  28. A. G. Mochugovskiy, N. Yu. Tabachkova, and A. V. Mikhaylovskaya, “Annealing induced precipitation of nanoscale icosahedral quasicrystals in aluminum based alloy,” Mater. Lett. 247, 200–203 (2019).

    Article  CAS  Google Scholar 

  29. A. A. Kishchik, A. V. Mikhaylovskaya, V. S. Levchenko, and V. K. Portnoy, “Formation of microstructure and the superplasticity of Al–Mg-based alloys,” Phys. Met. Metallogr. 118, No. 1, 96–103 (2017).

    Article  CAS  Google Scholar 

  30. GOST 21631–76. Sheets Made of Aluminum and Aluminum Alloys. Technical Conditions (Standartinform, 2008) [in Russian]

  31. V. S. Zolotorevskiy, R. I. Dobrojinskaja, V. V. Cheverikin, E. A. Khamnagdaeva, A. V. Pozdniakov, V. S. Levchenko, and E. S. Besogonova, “Evolution of structure and mechanical properties of Al–4.7Mg–0.32Mn–0.21Sc–0.09Zr alloy sheets after accumulated deformation during rolling,” Phys. Met. Metallogr. 117, No. 11, 1163–1169 (2016).

    Article  CAS  Google Scholar 

  32. V. S. Zolotorevskiy, R. I. Dobrojinskaja, V. V. Cheverikin, E. A. Khamnagdaeva, A. V. Pozdniakov, V. S. Levchenko, and E. S. Besogonova, “Strength and substructure of Al–4.7Mg–0.32Mn–0.21Sc–0.09Zr alloy sheets,” Phys. Met. Metallogr. 118, No. 4, 407–414 (2017).

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 19-79-10242).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pozdniakov.

Additional information

Translated by O. Golosova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amer, S.M., Barkov, R.Y. & Pozdniakov, A.V. Effect of Mn on the Phase Composition and Properties of Al–Cu–Y–Zr Alloy. Phys. Metals Metallogr. 121, 1227–1232 (2020). https://doi.org/10.1134/S0031918X20120029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20120029

Keywords:

Navigation