Skip to main content
Log in

Two-Motzkin-Like Numbers and Stieltjes Moment Sequences

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

First, we introduce the two-Motzkin-like number as the weight of vertically constrained Motzkin-like path with no leading vertical steps from (0, 0) to (n, 0) consisting of up steps, down steps, horizontal steps, vertical steps in the down direction and vertical steps in the up direction. Secondly, we provide sufficient conditions under which the two-Motzkin-like numbers (resp. the q-analogue of the two-Motzkin-like numbers) are Stieltjes moment sequences (resp. are q-Stieltjes moment sequences) and therefore infinitely log-convex sequences. As applications, on the one hand, we show that many well-known counting coefficients, including the central trinomial \(\left( {\begin{array}{c}2n\\ 2n\end{array}}\right) _{2}\) and pentanomial \(\left( {\begin{array}{c}2n\\ 4n\end{array}}\right) _{4}\) numbers of even indices respectively are Stieltjes moment sequences and, therefore, infinitely log-convex sequences in a unified approach. On the other hand, we prove that the sequence of polynomials of square trinomials \(\sum _{k=0}^{2n}\left( {\begin{array}{c}n\\ k\end{array}}\right) ^{2} _{2}q^{k}\) are q-Stieltjes moment sequence of polynomials. Finally, we provide a criterion for linear transformations and convolutions preserving Stieltjes moment sequences in more generalized triangular array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmia, M., Belbachir, H.: \(Q\)-total positivity and strong \(q\)-log-convexity for some generalized triangular arrays. Ramanujan J. 49, 341–352 (2019)

    Article  MathSciNet  Google Scholar 

  2. Ahmia, M., Belbachir, H.: Unimodality polynomials and generalized Pascal triangles. J. Algebra Discrete Math. 26(1), 1–7 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Ahmia, M., Belbachir, H.: Preserving log-convexity for generalized Pascal triangles. Electron. J. Combin. 19(2), 16 (2012)

    Article  MathSciNet  Google Scholar 

  4. Ahmia, M., Belbachir, H.: Log-concavity and LC-positivity for generalized triangles. J. Integer Seq. 23, 2053 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Andrews, G., Baxter, J.: Lattice gas generalization of the hard hexagon model III \(q\)-trinomials coefficients. J. Stat. Phys. 47, 297–330 (1987)

    Article  MathSciNet  Google Scholar 

  6. Bazeniar, A., Ahmia, M., Belbachir, H.: Connection between bi\(^{s}\)nomial coefficients with their analogs and symmetric functions. Turk. J. Math. 42, 807–818 (2018)

    MATH  Google Scholar 

  7. Belbachir, H., Igueroufa, O.: Congruence properties for bi\(^s\)nomial coefficients and like extended Ram and Kummer theorems under suitable hypothesis. Mediter. J. Math. 17, 36 (2020)

    Article  Google Scholar 

  8. Belbachir, H., Benmezai, A.: A \(q\)-analogue for bi\(^{s}\)nomial coefficients and generalized Fibonacci sequences. C. R. Acad. Sci. Paris Ser. I 352, 167–171 (2014)

    Article  Google Scholar 

  9. Belbachir, H., Bouroubi, S., Khelladi, A.: Connection between ordinary multinomials, Fibonacci numbers, Bell polynomials and discrete uniform distribution. Ann. Math. Inform. 35, 21–30 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Belbachir, H., Szalay, L.: Unimodal rays in the regular and generalized Pascal triangles. J. Integer Seq. 11(2)08.2.4 (2008)

  11. Brenti, F.: Unimodal, log-concave, and Pólya frequency sequences in combinatorics. Mem. Am. Math. Soc. 413(413) (1989)

  12. Brenti, F.: Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update. Contemp. Math. 178, 71–89 (1994)

    Article  MathSciNet  Google Scholar 

  13. Brenti, F.: Combinatorics and total positivity. J. Combin. Theory Ser. A 71, 175–218 (1995)

    Article  MathSciNet  Google Scholar 

  14. Brenti, F.: The applications of total positivity to combinatorics, and conversely, total positivity and its applications (Jaca, 1994). Math. Appl. 359, 451–473 (1996)

    MATH  Google Scholar 

  15. Bondarenko, B.A.: Generalized Pascal triangle and Pyramids, their fractals graphs and applications. The Fibonacci Association, Santa Clara (1993). (Translated by R C. Bollinger)

  16. Chen, X., Liang, H.Y.L., Wang, Y.: Total positivity of Riordan arrays. Eur. J. Comb. 46, 68–74 (2015)

    Article  MathSciNet  Google Scholar 

  17. Chen, X., Liang, H.Y.L., Wang, Y.: Total positivity of recursive matrices. Linear Algebra Appl. 471, 383–393 (2015)

    Article  MathSciNet  Google Scholar 

  18. Chen, W.Y.C., Xia, E.X.W.: The \(2\)-log-convexity of the Apéry numbers. Proc. Am. Math. Soc. 139, 391–400 (2011)

    Article  Google Scholar 

  19. Irvine, V., Melczer, S., Ruskey, F.: Vertically constrained Motzkin-like paths inspired by bobbin lace. Electron. J. Combin. 26(2), 2 (2019)

    Article  MathSciNet  Google Scholar 

  20. Karlin, S.: Total Positivity, vol. I. Stanford University Press, Stanford (1968)

    MATH  Google Scholar 

  21. Liang, H., Mu, L., Wang, Y.: Catalan-like numbers and Stieltjes moment sequences. Discrete Math. 339, 484–488 (2016)

    Article  MathSciNet  Google Scholar 

  22. Liang, H., Wang, Y., Zheng, S.: Hamburger moment sequences in combinatorics. Acta Math. Sin. (Engl. Ser.) 34, 1101–1109 (2018)

    Article  MathSciNet  Google Scholar 

  23. Liu, L.L., Wang, Y.: On the log-convexity of combinatorial sequences. Adv. Appl. Math. 39, 453–476 (2007)

    Article  MathSciNet  Google Scholar 

  24. Pólya, G., Szegö, G.: Problems and Theorems in Analysis, vol. II. Springer, Berlin (1976)

    Book  Google Scholar 

  25. Shohat, J.A., Tamarkin, J.D.: The Problem of Moments. American Mathematical Society, New York (1943)

    Book  Google Scholar 

  26. Sloane, N.: The On-Line Encyclopedia of Integer Sequences. Published electronically at https://oeis.org. Accessed July 2019

  27. Stanley, R.P.: Log-concave and unimodal sequences in algebra, combinatorics, and geometry. Ann. N. Y. Acad. Sci. 576, 500–534 (1989)

    Article  MathSciNet  Google Scholar 

  28. Wang, Y., Zhu, B.X.: Log-convex and Stieltjes moment sequences. Adv. Appl. Math. 82, 115–127 (2016)

    Article  MathSciNet  Google Scholar 

  29. Wang, Y., Yeh, Y.-N.: Log-concavity and LC-positivity. J. Combin. Theory Ser. A 114, 195–210 (2007)

    Article  MathSciNet  Google Scholar 

  30. Zhu, B.-X.: Log-convexity and strong \(q\)-log-convexity for some triangular arrays. Adv. Appl. Math. 50, 595–606 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewer for many valuable remarks and suggestions to improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moussa Ahmia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Other Stieltjes Moment Sequences in OEIS

Appendix A: Other Stieltjes Moment Sequences in OEIS

$$\begin{aligned} \begin{array}{|c|c|c|c|c|} \hline a_{n} &{} \sum _{k=0}^{n}\left( {\begin{array}{c}n\\ k\end{array}}\right) M_{k} &{} \sum _{k=0}^{n}\left( {\begin{array}{c}n\\ k\end{array}}\right) C_{k} &{} \sum _{k=0}^{2n}\left( {\begin{array}{c}n\\ k\end{array}}\right) _{2}\left( {\begin{array}{c}2k\\ k\end{array}}\right) &{} \sum _{k=0}^{2n}\left( {\begin{array}{c}n\\ k\end{array}}\right) _{2}B_{k} \\ \hline \text {OEIS} &{} A270561 &{} A007317 &{} A082760 &{} A207864\\ \hline \end{array} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmia, M., Rezig, B. Two-Motzkin-Like Numbers and Stieltjes Moment Sequences. Mediterr. J. Math. 18, 65 (2021). https://doi.org/10.1007/s00009-021-01700-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-021-01700-0

Keywords

Mathematics Subject Classification

Navigation