Skip to main content

Advertisement

Log in

High energy storage of La-doped PbZrO3 thin films using LaNiO3/Pt composite electrodes with wide temperature range

  • Original Paper: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

With the evolution of power electronic system to miniaturization and integration, dielectric capacitors are extensively studied in electric power systems such as electron beam and direction energy weapons owing to outstanding energy storage density and low loss. In this work, Pb0.97La0.02ZrO3 (PLZ) films were deposited on LaNiO3 (LNO)/Pt and LNO electrodes using sol-gel method, respectively. High spontaneous polarization (Ps ~ 91.3 μC cm−2) and low remanent polarization (Pr ~ 7.3 μC cm−2) can be obtained from PLZ/LNO/Pt/TiO2/SiO2/Si with energy storage density up to 25.4 J cm−3, which could be explained by good ohmic contact between films and composite electrodes. Besides, recoverable energy storage of films exhibits outstanding temperature stability (25.9–25.3 J cm−3) over -60 - 20 °C. These results suggest that LNO/Pt composite electrodes can be used to optimize PLZ films properties, which could be considered as a valid way for developing wide temperature range energy-storage capacitors.

Highlights

  • High quality PbLaZrO3(PLZ) films could be obtained by LaNiO3 (LNO)/Pt electrode owing to good ohmic contact and lattice matching between films and composite electrode.

  • High spontaneous polarization (Ps ~ 91.3 μC cm−2) and low remanent polarization (Pr ~ 7.3 μC cm−2) can be obtained in PLZ/LNO/Pt/TiO2/SiO2/Si.

  • Excellent energy storage could be obtained in PLZ films within wide temperature range (−60–200 °C). Especially, recoverable energy storage of films exhibits outstanding temperature endurance (25.9–25.3 J cm−3) over −60–20 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang JJ, Su YJ, Wang B, Ouyang J, Ren YH, Chen LQ (2020) Strain engineering of dischargeable energy density of ferroelectric thin-film capacitors. Nano Energy 72:104665

    Article  CAS  Google Scholar 

  2. Peng BL, Zhang Q, Li X, Sun TY, Fan HQ, Ke SM, Ye M, Wang Y, Lu W, Niu HB, Zeng XR, Huang HT (2015) Large Energy Storage Density and High Thermal Stability in a Highly Textured (111)-Oriented Pb0.8Ba0.2ZrO3 Relaxor Thin Film with the Coexistence of Antiferroelectric and Ferroelectric Phases. Acs Appl Mater Inter 7:13512–13517

    Article  CAS  Google Scholar 

  3. Qiao XJ, Geng WP, Chen X, Zhang LY, Zheng DW, Zhang L, He J, Hou XJ, Yang Y, Cui M, Zeng KY, Chou XJ (2020) Enhanced energy storage properties and temperature stability of fatigue-free La-modified PbZrO3 films under low electric fields. Sci China Mater 63:2325–2334

    Article  CAS  Google Scholar 

  4. Fu ZQ, Chen XF, Li ZQ, Hu TF, Zhang PL, Zhang SJ, Wang GS, Dong XL, Xu FF (2020) Unveiling the ferrielectric nature of PbZrO3-based antiferroelectric materials. Nat Commun 11:3809

    Article  CAS  Google Scholar 

  5. Li YZ, Wang ZJ, Bai Y, Zhang ZD (2019) High energy storage performance in Ca-doped PbZrO3 antiferroelectric films. J Eur Ceram Soc 40:1285–1292

    Article  Google Scholar 

  6. Campbell CK, Wyk JDV, Chen RG (2002) Experimental and theoretical characterization of an antiferroelectric ceramic capacitor for power electronics. IEEE T Compon Pack T 25:211–216

    Article  Google Scholar 

  7. Sharifzadeh MS, Yao K, Sritharan T (2010) Large strain and high energy storage density in orthorhombic perovskite (Pb0.97La0.02)(Zr1−x−ySnxTiy)O3 antiferroelectric thin films. Appl Phys Lett 97:142902

    Article  Google Scholar 

  8. Liu ZH, Yuan Y, Luo Z, Wan HY, Gao P, Wu H, Zhuang J, Zhang J, Zhang N, Liu HZ, Ren W, Ye ZG (2020) Effects of Antiferroelectric Substitution on the Structure and Ferroelectric Properties of a Complex Perovskite Solid Solution. J Mater Chem C 8:5795–5806

    Article  Google Scholar 

  9. Lee HJ, Won SS, Cho KH, Han CK, Mostovych N, Kingon AI, Kim SH, Lee HY (2018) Flexible high energy density capacitors using La-doped PbZrO3 anti-ferroelectric thin films. Appl Phys Lett 112:092901

    Article  Google Scholar 

  10. Liu Z, Dong XL, Liu Y, Cao F, Wang GS (2017) Electric field tunable thermal stability of energy storage properties of PLZST antiferroelectric ceramics. J Am Ceram Soc 100:2382–2386

    Article  CAS  Google Scholar 

  11. Xu R, Xu Z, Feng YJ, Tian JJ, Huang D (2016) Huang Energy storage and release properties of Sr-doped (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric ceramics. Ceram Int 42:12875–12879

    Article  CAS  Google Scholar 

  12. Chen SC, Wang XC, Yang TQ, Wang JF (2014) Composition-dependent dielectric properties and energy storage performance of (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric ceramics. J Electroceram 32:307–310

    Article  CAS  Google Scholar 

  13. Nguyen MD, Guus R (2018) Electric field-induced phase transition and energy storage performance of highly-textured PbZrO3 antiferroelectric films with a deposition temperature dependence. J Eur Ceram Soc 38:4953–4961

    Article  CAS  Google Scholar 

  14. Zhang TD, Li WL, Hou YF, Yu Y, Song RX, Cao WP, Fei WD (2017) High-energy storage density and excellent temperature stability in antiferroelectric/ferroelectric bilayer thin films. J Am Ceram Soc 100:3080–3087

    Article  CAS  Google Scholar 

  15. Zhang TD, Li WL, Yu Y, Wang M, He J, Fei WD (2018) Giant electrocaloric effect in compositionally graded PZT multilayer thin films. J Alloy Compd 731:489–495

    Article  CAS  Google Scholar 

  16. Hao XH, Zhai JW, Yao X (2009) Improved Energy Storage Performance and Fatigue Endurance of Sr-Doped PbZrO3 Antiferroelectric Thin Films. J Am Ceram Soc 92:1133–1135

    Article  CAS  Google Scholar 

  17. Ye M, Sun Q, Chen XQ, Jiang ZH, Wang FP (2011) Effect of Eu doping on the electrical properties and energy storage performance of PbZrO3 antiferroelectric thin films. J Am Ceram Soc 94:3234–3236

    Article  CAS  Google Scholar 

  18. Dan Y, Zou KL, Chen G, Yu YX, Zhang Y, Zhang QF, Lu YM, Zhang Q, He YB (2019) Superior energy-storage properties in (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric ceramics with appropriate La content. Ceram Int 45:11375–11381

    Article  CAS  Google Scholar 

  19. He SK, Peng BL, Leighton GT, Shaw C, Wang NZ, Sun WH, Liu LJ, Zhang Q (2019) High-performance La-doped BCZT thin film capacitors on LaNiO3/Pt composite bottom electrodes with ultra-high efficiency and high thermal stability. Ceram Int 45:4511749–4511755.

  20. Zhai JW, Yao X, Xu ZK, Chen H (2006) Enhancement of ferroelectricity in the compositionally graded (Pb,Sr)TiO3 thin films derived by a sol–gel process. J Cryst Growth 286:37–41

    Article  CAS  Google Scholar 

  21. Zhai JW, Yao X, Xu ZK, Chen H (2006) Effect of Orientation on the Ferroelectric Behavior of (Pb,Sr)TiO3 Thin Films. J Am Ceram Soc 89:354–357

    Article  CAS  Google Scholar 

  22. Gao HC, Hao XH, Zhang QW, An SL, Kong LB (2016) Electrocaloric effect and energy-storage performance in grain-size-engineered PBLZT antiferroelectric thick films. J Mater Sci-Mater El 27:10309–10319

    Article  CAS  Google Scholar 

  23. Cai HH, Yan SG, Zhou MM, Liu NT, Ye JM, Li S, Cao F, Dong XL, Wang GS (2019) Significantly improved energy storage properties and cycling stability in La-doped PbZrO3 antiferroelectric thin films by chemical pressure tailoring. J Eur Ceram Soc 39:4761–4769

    Article  CAS  Google Scholar 

  24. Prosandeev S, Raevski I, Malitskaya M, Raevskaya S, Chen H, Chou C, Dkhil B (2013) Condensation of the atomic relaxation vibrations in lead-magnesium-niobate at T=T*. J Appl Phys 114:124103

    Article  Google Scholar 

  25. Li P, Zhai JW, Zeng HR, Zhao KY, Shen B, Chen H (2015) Effects of LaNiO3 seeding layers on the crystal structure and electrical properties in 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 thin films. Ceram Int 41:12980–12987

    Article  CAS  Google Scholar 

  26. Peng B, Zhang Q, Lyu Y, Liu L, Lou X, Shaw C, Huang H, Wang Z (2018) Thermal strain induced large electrocaloric effect of relaxor thin film on LaNiO3/Pt composite electrode with the coexistence of nanoscale antiferroelectric and ferroelectric phases in a broad temperature range. Nano Energy 47:285–293

    Article  CAS  Google Scholar 

  27. Pintilie L, Boldyreva K, Alexe M, Hesse D (2008) Coexistence of ferroelectricity and antiferroelectricity in epitaxial PbZrO3 films with different orientations. J Appl Phys 103:024101

    Article  Google Scholar 

  28. Ye M, Sun Q, Chen XQ, Jiang ZH, Wang FP (2012) Effect of Nb doping on preferential orientation, phase transformation behavior and electrical properties of PbZrO3 thin films. J Alloy Compd 541:99–103

    Article  CAS  Google Scholar 

  29. Etsuro S (1953) Ferroelectricity versus antiferroelectricity in the solid solutions of PbZrO3 and PbTiO3. J Phys Soc Jpn 8:615–629

    Article  Google Scholar 

  30. Tong S, Ma BH, Narayanan M, Liu SS, Koritala R, Balachandran U, Shi DL (2013) Lead Lanthanum Zirconate Titanate Ceramic Thin Films for Energy Storage. ACS Appl Mater Inter 5:1474–1480

    Article  CAS  Google Scholar 

  31. Hao XH, Zhai JW, Kong LB, Xu ZK (2014) A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog Mater Sci 63:1–57

    Article  CAS  Google Scholar 

  32. Liu YY, Wang Y, Hao XH, Xu JB (2013) Preparation and energy-storage performance of PLZT antiferroelectric thick films via sol–gel method. Ceram Int 39:S513–S516

    Article  CAS  Google Scholar 

  33. Zhao Y, Hao XH, Zhang Q (2014) Energy-storage properties and electrocaloric effect of Pb(1−3x/2)LaxZr0.85Ti0.15O3 antiferroelectric thick films. ACS Appl Mater Inter 6:11633–11639

    Article  CAS  Google Scholar 

  34. Zhao Y, Hao XH, Gao HC, Zhang Q (2016) Orientation-dependent energy-storage performance and electrocaloric effect in PLZST antiferroelectric thick films. Mater Res Bull 84:177–184

    Article  CAS  Google Scholar 

  35. Nguyen MD, Trinh TT, Dang HT, Vu HN (2020) Understanding the effects of electric-field-induced phase transition and polarization loop behavior on the energy storage performance of antiferroelectric PbZrO3 thin films. Thin Solid Films 697:137794

    Article  CAS  Google Scholar 

  36. Liu P, Fan BY, Yang G, Li WR, Zhang HB, Jiang SL (2019) High energy density at high temperature in PLZST antiferroelectric ceramics. J Mater Chem C 7:4587–4594

    Article  CAS  Google Scholar 

  37. Sun BW, Guo MY, Wu M, Ma Z, Gao WW, Sun HN, Lou XJ (2019) Large enhancement of energy storage density in (Pb0.92La0.08)(Zr0.65Ti0.35)O3/PbZrO3 multilayer thin film. Ceram Int 45:20046–20050

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [grant numbers 51975541, 62001431, 61704159]; the National Key R&D Program of China [grant numbers 2018YFE0115500, 2019YFF0301802]; Research Project Supported by Shanxi Scholarship Council of China [2020-112].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiujian Chou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, D., Geng, W., Qiao, X. et al. High energy storage of La-doped PbZrO3 thin films using LaNiO3/Pt composite electrodes with wide temperature range. J Sol-Gel Sci Technol 98, 264–270 (2021). https://doi.org/10.1007/s10971-021-05485-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05485-2

Keywords

Navigation