Skip to main content

Advertisement

Log in

Effect of Bound Polaron and Electromagnetic Field on Thermodynamic Properties of GaAs Quadratic Quantum Dot

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The effect of bound polaron on the thermodynamic properties of GaAs quantum dot (QD) with a quadratic potential in the presence of electromagnetic field is presented. The Schrödinger method as well as the canonical ensemble approach has been used to determine the energy of polaron and the thermodynamic properties such as heat capacity, entropy, and magnetic susceptibility with the help of canonical partition function. We found that the heat capacity increases with a potential confinement angle and also with temperature, and decreases with the increase in the magnetic field. This reduction in the heat capacity shows that our system behaves as a refrigerator. Furthermore, an increasing in magnetic field reduces the disorder in the quantum dot. Indeed, a strong increase in the magnetic field is much better for a good confinement of particles. Moreover, we found that the materials with low coupling constant avoid disorder in the quantum system. The polaron is therefore a good protector of the quantum dot against the external effects. We also found that an increasing temperature increases the speed of electrons and also for very small values of magnetic field, the system stores more energy. It is worthy to mention that our approach is consistent with the characteristic behavior of the diamagnetic materials, well-known as GaAs quantum dots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.T. Ghaltaghchyan, E.M. Kazaryan, H.A. Sarkisyan, Diamagnetic susceptibility of the electron gas in the cylindrical nanolayer. J. Contemporary Phys. (Armenian Academy of Sciences) 51(2), 162–167 (2016)

    Article  ADS  Google Scholar 

  2. S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, J.M. Gérard, Strong electron-phonon coupling regime in quantum dots: evidence for everlasting resonant polarons. Phys. Rev. Lett. 83(20), 4152 (1999)

    Article  ADS  Google Scholar 

  3. Peter, E. (2006). Couplage fort exciton-photon pour une boîte quantique de GaAs en microdisque (Doctoral dissertation, Université Paris Sud-Paris XI).

  4. Elsaid, M. K., & Hijaz, E. (2017). Magnetic Susceptibility of Coupled Double GaAs Quantum Dot in Magnetic Fields. Acta Phys. Polonica, A., 131(6).

  5. A.J. Fotue, M.F.C. Fobasso, S.C. Kenfack, M. Tiotsop, J.R. Djomou, C.M. Ekosso, L.C. Fai, Tunable potentials and decoherence effect on polaron in nanostructures. Euro. Phys. J. Plus 131(6), 205 (2016)

    Article  Google Scholar 

  6. M. Helle, A. Harju, R.M. Nieminen, Two-electron lateral quantum-dot molecules in a magnetic field. Phys. Rev. B 72(20), 205329 (2005)

    Article  ADS  Google Scholar 

  7. B. Boyacioglu, A. Chatterjee, Magnetic properties of semiconductor quantum dots with gaussian confinement. Int. J. Mod. Phys. B 26(04), 1250018 (2012)

    Article  ADS  Google Scholar 

  8. J.J.S. De Groote, J.E.M. Hornos, A.V. Chaplik, Thermodynamic properties of quantum dots in a magnetic field. Phys. Rev. B 46(19), 12773 (1992)

    Article  ADS  Google Scholar 

  9. K. Tanaka, Ann Phys. 268, 31 (1998)

    Article  ADS  Google Scholar 

  10. O. Olendski, C.S. Kim, O.H. Chung, C.S. Lee, Persistent current of a two-electron quantum disk. Phys. Rev. B 55(15), 9834 (1997)

    Article  ADS  Google Scholar 

  11. O. Voskoboynikov, O. Bauga, C.P. Lee, O. Tretyak, Magnetic properties of parabolic quantum dots in the presence of the spin–orbit interaction. J. Appl. Phys. 94(9), 5891–5895 (2003)

    Article  ADS  Google Scholar 

  12. J.I. Climente, J. Planelles, J.L. Movilla, Magnetization of nanoscopic quantum rings and dots. Phys. Rev. B 70(8), 081301 (2004)

    Article  ADS  Google Scholar 

  13. J.D. Castaño-Yepes, C.F. Ramirez-Gutierrez, H. Correa-Gallego, E.A. Gómez, A comparative study on heat capacity, magnetization and magnetic susceptibility for a GaAs quantum dot with asymmetric confinement. ArXiv preprint arXiv 1609, 01359 (2016)

    Google Scholar 

  14. Diffo, T. V., Fotue, A. J., Kenfack, S. C., Tsiaze, R. K., Baloitcha, E., & Hounkonnou, M. N. Thermodynamic properties of a monolayer transition metal dichalcogenide (TMD) quantum dot in the presence of magnetic field. Phys. Lett. A, 385, 126958.

  15. B. Boyacioglu, A. Chatterjee, Heat capacity and entropy of a GaAs quantum dot with Gaussian confinement. J. Appl. Phys. 112(8), 083514 (2012)

    Article  ADS  Google Scholar 

  16. M.F.C. Fobasso, A.J. Fotue, S.C. Kenfack, L.C. Fai, Thermal properties of magnetopolaron in a GaAs delta potential under Rashba effect. Physica E 118, 113941 (2020)

    Article  Google Scholar 

  17. A.J. Fotue, N. Issofa, M. Tiotsop, S.C. Kenfack, M.T. Djemmo, H. Fotsin, L.C. Fai, Electric and magnetic optical polaron in quantum dot—Part 1: strong coupling. J. Semiconductors 36(7), 072001 (2015)

    Article  ADS  Google Scholar 

  18. A.J. Fotue, N. Issofa, M. Tiotsop, S.C. Kenfack, M.T. Djemmo, A.V. Wirngo, L.C. Fai, Bound magneto-polaron in triangular quantum dot qubit under an electric field. Superlattices Microstruct. 90, 20–29 (2016)

    Article  ADS  Google Scholar 

  19. R. Khordad, H.R. Sedehi, Comparison of bound magneto-polaron in circular, elliptical, and triangular quantum dot qubit. Opt. Quant. Electron. 52(10), 1–12 (2020)

    Article  Google Scholar 

  20. J.K. Sun, H.J. Li, J.L. Xiao, The temperature effect of the triangular bound potential quantum dot qubit. Superlattices Microstruct. 46(3), 476–482 (2009)

    Article  ADS  Google Scholar 

  21. S. Jia-kui, L. Hong-juan, J.L. Xiao, Triangular bound potential quantum dot qubit. Physica B 404(14–15), 1961–1964 (2009)

    Article  ADS  Google Scholar 

  22. J.K. Sun, H.J. Li, J.L. Xiao, Decoherence of the Triangular Bound Potential Quantum Dot Qubit. Mod. Phys. Lett. B 23(27), 3273–3279 (2009)

    Article  ADS  Google Scholar 

  23. L. Hong-Juan, S. Jia-Kui, X. Jing-Lin, The decoherence of the triangular and Coulomb bound potential quantum dot qubit. Chin. Phys. B 19(1), 010314 (2010)

    Article  Google Scholar 

  24. H.J. Li, J.W. Yin, J.L. Xiao, The Triangular and Coulomb Bound Potential Quantum Dot Qubit. J. Low Temp. Phys. 172(3–4), 266–273 (2013)

    Article  ADS  Google Scholar 

  25. Y.F. Yu, H.J. Li, J.W. Yin, The Effects of Electric Field on Oscillation Period of Triangular Bound Potential Quantum Dot Qubit. J. Low Temp. Phys. 173(5–6), 282–288 (2013)

    Article  ADS  Google Scholar 

  26. J.W. Yin, Y.F. Yu, H.J. Li, The Effects of Electric Field on a Triangular Bound Potential Quantum Dot Qubit. J. Low Temp. Phys. 177(1–2), 72–79 (2014)

    Article  ADS  Google Scholar 

  27. T. Ezaki, N. Mori, C. Hamaguchi, Electronic structures in circular, elliptic, and triangular quantum dots. Phys. Rev. B 56(11), 6428 (1997)

    Article  ADS  Google Scholar 

  28. M. Tiotsop, A.J. Fotue, H.B. Fotsin, L.C. Fai, Chin. J. Phys. 56, 315–322 (2018)

    Article  Google Scholar 

  29. Oh, K. J. Chang, G. Ihm, and S. J. Lee, J. Korean Phys. Soc. 28, 132(1995).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Fotue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taguefouet, L.M., Silenou, M. & Fotue, A.J. Effect of Bound Polaron and Electromagnetic Field on Thermodynamic Properties of GaAs Quadratic Quantum Dot. J Low Temp Phys 203, 112–126 (2021). https://doi.org/10.1007/s10909-021-02576-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02576-w

Keywords

Navigation