Skip to main content
Log in

Adaptive Directional Haar Tight Framelets on Bounded Domains for Digraph Signal Representations

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Based on hierarchical partitions, we provide the construction of Haar-type tight framelets on any compact set \(K\subseteq \mathbb {R}^d\). In particular, on the unit block \([0,1]^d\), such tight framelets can be built to be with adaptivity and directionality. We show that the adaptive directional Haar tight framelet systems can be used for digraph signal representations. Some examples are provided to illustrate results in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017)

    Article  Google Scholar 

  2. Candès, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise \(C^2\) singularities. Commun. Pure Appl. Math. 57(2), 219–266 (2004)

    Article  Google Scholar 

  3. Che, Z., Zhuang, X.: Digital affine shear filter banks with 2-Layer structure and their applications in image processing. IEEE Trans. Image Process. 27(8), 3931–3941 (2018)

    Article  MathSciNet  Google Scholar 

  4. Cheng, C., Emirov, N., Sun, Q.: Preconditioned gradient descent algorithm for inverse filtering on spatially distributed networks. arXiv:2007.11491 (2020)

  5. Chui, C.K.: An Introduction to Wavelets. Wavelet Analysis and its Applications, vol. 1. Academic Press Inc, Boston (1992)

    Google Scholar 

  6. Chui, C.K., Donoho, D.L.: Special issue: diffusion maps and wavelets. Appl. Comput. Harmon. Anal. 21(1), 31 (2006)

    Article  MathSciNet  Google Scholar 

  7. Chui, C.K., Filbir, F., Mhaskar, H.N.: Representation of functions on big data: graphs and trees. Appl. Comput. Harmon. Anal. 38(3), 489–509 (2015)

    Article  MathSciNet  Google Scholar 

  8. Chui, C.K., Mhaskar, H.N., Zhuang, X.: Representation of functions on big data associated with directed graphs. Appl. Comput. Harmon. Anal. 44(1), 165–188 (2018)

    Article  MathSciNet  Google Scholar 

  9. Chung, F.R.K.: Spectral Graph Theory, vol. 92. American Mathematical Soc, Providence (1997)

    MATH  Google Scholar 

  10. Chung, F.: Laplacians and the cheeger inequality for directed graphs. Ann. Combin. 9(1), 1–19 (2005)

    Article  MathSciNet  Google Scholar 

  11. Cohen, A., Daubechies, I., Vial, P.: Wavelets on the interval and fast wavelet transforms. Appl. Comput. Harmon. Anal. 1(1), 54–81 (1993)

    Article  MathSciNet  Google Scholar 

  12. Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), vol. 61, Philadelphia, PA (1992)

  13. Diao, C., Han, B.: Quasi-tight framelets with high vanishing moments derived from arbitrary renable functions. Appl. Comput. Harmon. Anal. 49(1), 123–151 (2020)

    Article  MathSciNet  Google Scholar 

  14. Dong, B.: Sparse representation on graphs by tight wavelet frames and applications. Appl. Comput. Harmon. Anal. 42(3), 452–479 (2017)

    Article  MathSciNet  Google Scholar 

  15. Donoho, D.L., Kutyniok, G., Shahram, M., Zhuang, X.: A rational design of a digital shearlet transform. In: The 9th International Conference on Sampling Theory and Applications (SampTA’11). Singapore (2011)

  16. Emirov, N., Cheng, C., Jiang, J., Sun, Q.: Polynomial graph filter of multiple shifts and distributed implementation of inverse filtering. arXiv:2003.11152 (2020)

  17. Garcia-Cardona, C., Merkurjev, E., Bertozzi, A.L., Flenner, A., Percus, A.G.: Fast multiclass segmentation using diffuse interface methods on graphs. Technical report, DTIC Document (2013)

  18. Gavish, M., Nadler, B., Coifman, R.R.: Multiscale wavelets on trees, graphs and high dimensional data: theory and applications to semi supervised learning. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp 367–374 (2010)

  19. Haar, A.: Zur theorie der orthogonalen funktionensysteme. Math. Ann. 69(3), 331–371 (1910)

    Article  MathSciNet  Google Scholar 

  20. Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 30(2), 129–150 (2011)

    Article  MathSciNet  Google Scholar 

  21. Han, B.: Framelets and Wavelets: Algorithms, Analysis, and Applications. Birkhäuser (2017)

  22. Han, B., Michelle, M.: Construction of wavelets and framelets on a bounded interval. Anal. Appl. 16(06), 807–849 (2018)

    Article  MathSciNet  Google Scholar 

  23. Han, B., Zhuang, X.: Algorithms for matrix extension and orthogonal wavelet filter banks over algebraic number fields. Math. Comput. 82(281), 459–490 (2013)

    Article  MathSciNet  Google Scholar 

  24. Han, B., Zhuang, X.: Smooth affine shear tight frames with MRA structures. Appl. Comput. Harmon. Anal. 39(2), 300–338 (2015)

    Article  MathSciNet  Google Scholar 

  25. Han, X., Chen, Y., Shi, J., He, Z.: An extended cell transmission model based on digraph for urban traffic road network. In: 15th International IEEE Conference on Intelligent Transportation Systems (ITSC) (2012)

  26. Han, B., Zhao, Z., Zhuang, X.: Directional tensor product complex tight framelets with low redundancy. Appl. Comput. Harmon. Anal. 41(2), 603–637 (2016)

    Article  MathSciNet  Google Scholar 

  27. Han, B., Li, T., Zhuang, X.: Directional compactly supported box spline tight framelets with simple geometric structure. Appl. Math. Lett 91, 213–219 (2019)

    Article  MathSciNet  Google Scholar 

  28. Han, B., Mo, Q., Zhao, Z., Zhuang, X.: Directional compactly supported tensor product complex tight framelets with applications to image denoising and inpainting. SIAM J. Imaging Sci. 12(4), 1739–1771 (2019)

    Article  MathSciNet  Google Scholar 

  29. Jiang, J., Tay, D.B., Sun, Q., Ouyang, S.: Design of nonsubsampled graph filter banks via lifting schemes. IEEE Signal Process. Lett. 27, 441–445 (2020)

    Article  Google Scholar 

  30. Kutyniok, G., Labate, D.: Shearlets: Multiscale Analysis for Multivariate Data, Applied and Numerical Harmonic Analysis. Springer, New York (2012)

    Book  Google Scholar 

  31. Lafon, S., Lee, A.B.: Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(9), 1393–1403 (2006)

    Article  Google Scholar 

  32. Li, Y., Zhang, Z.-L.: Digraph laplacian and the degree of asymmetry. Internet Math. 8(4), 381–401 (2012)

    Article  MathSciNet  Google Scholar 

  33. Li, Y.-R., Zhuang, X.: Parallel magnetic resonance imaging reconstruction algorithm by 3-dimension directional Haar tight framelet regularization. In: Wavelets and Sparsity XVIII, SPIE Proc. 11138-47 (2019)

  34. Li, Y.-R., Chan, R.H., Shen, L., Hsu, Y.-C., Tseng, W.-Y.I.: An adaptive directional Haar framelet-based reconstruction algorithm for parallel magnetic resonance imaging. SIAM J. Imaging Sci. 9(2), 794–821 (2016)

    Article  MathSciNet  Google Scholar 

  35. Li, M., Ma, Z., Wang, Y.G., Zhuang, X.: Fast Haar transform for graph neural networks. Neural Netw. 128, 188–198 (2020)

    Article  Google Scholar 

  36. Lim, L.-H.: Hodge laplacians on graphs. arXiv:1507.05379 (2015)

  37. Mallat, S.: A Wavelet Tour of Signal Processing. Elsevier/Academic Press, Amsterdam, Third edition, The Sparse Way, With Contributions from Gabriel Peyré (2009)

  38. Malliaros, F.D., Vazirgiannis, M.: Clustering and community detection in directed networks: a survey. Phys. Rep. 533(4), 95–142 (2013)

    Article  MathSciNet  Google Scholar 

  39. Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  Google Scholar 

  40. Pesenson, I.: Sampling in Paley-Wiener spaces on combinatorial graphs. Trans. Am. Math. Soc. 360(10), 5603–5627 (2008)

    Article  MathSciNet  Google Scholar 

  41. Pesenson, I., Le Gia, Q.T., Mayeli, A., Mhaskar, H., Zhou, D.X.: Recent Applications of Harmonic Analysis to Function Spaces, Differential Equations, and Data Science: Novel Methods in Harmonic Analysis, vol. 2. Applied and Numerical Harmonic Analysis, Birkhäuser (2017)

  42. Przulj, N.: Introduction to the special issue on biological networks. Internet Math. 7(4), 207–208 (2011)

    Article  MathSciNet  Google Scholar 

  43. Satuluri, V., Parthasarathy, S.: Symmetrizations for clustering directed graphs. In: ACM Proceedings of the 14th International Conference on Extending Database Technology, pp. 343–354 (2011)

  44. Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.C.: The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22(6), 123–151 (2005)

    Article  Google Scholar 

  45. Singer, A.: From graph to manifold Laplacian: the convergence rate. Appl. Comput. Harmon. Anal. 21(1), 128–134 (2006)

  46. Smith, L.M., Zhu, L., Lerman,K., Kozareva, Z.: The role of social media in the discussion of controversial topics. In: 2013 IEEE International Conference on Social Computing (SocialCom)

  47. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  48. Van Dongen, S.M.: Graph Clustering by Flow Simulation, PhD thesis, University of Utrecht (2001)

  49. Wang, Y. G., Zhuang, X.: Tight framelets on graphs for multiscale data analysis. In: Wavelets and Sparsity XVIII, SPIE Proc. 11138-11 (2019)

  50. Wang, Y.G., Zhuang, X.: Tight framelets and fast framelet filter bank transforms on manifolds. Appl. Comput. Harmon. Anal. 48(1), 64–95 (2020)

    Article  MathSciNet  Google Scholar 

  51. Wang, Y. G., Li, M., Ma, Z., Montufar, G., Zhuang, X., Fan, Y.: Haar graph pooling. In: Proceedings of ICML 2020 (ICML 2020), pp. 3807–3817 (2020)

  52. Zhuang, X.: Digital affine shear transforms: fast realization and applications in image/video processing. SIAM J. Imaging Sci. 9(3), 1437–1466 (2016)

    Article  MathSciNet  Google Scholar 

  53. Zhuang, X., Han, B.: Compactly supported tensor product complex tight framelets with directionality. In: 2019 International Conference on Sampling Theory and Applications (SampTA), pp. 1–5 Bordeaux, France (2019)

Download references

Acknowledgements

The authors thank the anonymous reviewers for their constructive comments and valuable suggestions that greatly help the improvement of the quality of the paper. The research and the work described in this paper was partially supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU 11301419) and City University of Hong Kong (Project No. 7005497)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosheng Zhuang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Zhuang, X. Adaptive Directional Haar Tight Framelets on Bounded Domains for Digraph Signal Representations. J Fourier Anal Appl 27, 7 (2021). https://doi.org/10.1007/s00041-021-09816-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-021-09816-3

Keywords

Navigation