Skip to main content
Log in

First-principles study of two-dimensional puckered and buckled honeycomb-like carbon sulfur systems

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The stability and geometrical, mechanical, and electronic properties of monolayer carbon sulfur (CS) systems with honeycomb-like structure are studied by using first-principles calculations based on density functional theory. The results demonstrate that the honeycomb-like CS systems with two types of structure (buckled and puckered) are quite stable. It is found that such puckered and buckled CS nanosheets possess indirect gaps of 1.952 and 2.325 eV, respectively. Interestingly, both puckered and buckled CS monolayer materials exhibit negative out-of-plane Poisson’s ratio, most likely originating from their puckered and buckled nature. Moreover, their bandgap can be effectively modulated by altering bond and bond lengths under uni- and biaxial strains. Meanwhile, an indirect-to-direct gap transition occurs in both monolayers, which is a useful feature for addressing the electron transition difficulties observed for intrinsic indirect nanosheets, thereby enabling their use in solar cells and light-emitting diodes. In particular, the Dirac-like cones of the puckered CS monolayer are identified in the band structure on the application of appropriate zigzag tensile strain. The results of the present calculations are very interesting for the selection of monolayer CS materials for use in electronic devices and provide a promising method to engineer their electronic characteristics for potential applications in future electronic and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cai, Y., Ke, Q., Zhang, G., Yakobson, B.I., Zhang, Y.-W.: Highly itinerant atomic vacancies in phosphorene. J. Am. Chem. Soc. 138, 10199 (2016)

    Article  Google Scholar 

  2. Wang, C.-X., Zhang, C., Jiang, J.-W., Park, H.S., Rabczuk, T.: Mechanical strain effects on black phosphorus nanoresonators. Nanoscale 8, 901 (2016)

    Article  Google Scholar 

  3. Qiao, J., Kong, X., Hu, Z.-X., Yang, F., Ji, W.: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014)

    Article  Google Scholar 

  4. Sha, Z.-D., Pei, Q.-X., Ding, Z., Jiang, J.-W., Zhang, Y.-W.: Mechanical properties and fracture behavior of single-layer phosphorene at finite temperatures. J. Phys. D Appl. Phys. 48, 395303 (2015)

    Article  Google Scholar 

  5. Jiang, J.-W.: Thermal conduction in single-layer black phosphorus: highly anisotropic? Nanotechnology 26, 055701 (2015)

    Article  Google Scholar 

  6. Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H., Zhang, Y.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372 (2014)

    Article  Google Scholar 

  7. Cai, Y., Zhang, G., Zhang, Y.W.: Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep. 4, 6677 (2014)

    Article  Google Scholar 

  8. Wei, Q., Peng, X.: Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104, 251915 (2014)

    Article  Google Scholar 

  9. Jiang, J.-W., Park, H.S.: Negative Poisson’s ratio in single-layer black phosphorus. Nat. Commun. 5, 4727 (2014)

    Article  Google Scholar 

  10. Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033 (2014)

    Article  Google Scholar 

  11. Buscema, M., Groenendijk, D.J., Blanter, S.I., Steele, G.A., van der Zant, H.S.J., Castellanos-Gomez, A.: Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347 (2014)

    Article  Google Scholar 

  12. Guo, G.-C., Wang, R.-Z., Ming, B.-M., Wang, C., Luo, S.-W., Zhang, M., Yan, H.: C3N/phosphorene heterostructure: a promising anode material in lithium-ion batteries. J. Mater. Chem. A 7, 2106 (2019)

    Article  Google Scholar 

  13. Losi, G., Restuccia, P., Righi, M.C.: Superlubricity in phosphorene identified by means of ab initio calculations. 2D Mater. 7, 025033 (2020)

    Article  Google Scholar 

  14. Kang, S., Lee, D., Kim, J., Capasso, A., Kang, H.S., Park, J.-W., Lee, C.-H., Lee, G.-H.: 2D semiconducting materials for electronic and optoelectronic applications: potential and challenge. 2D Mater. 7, 022003 (2020)

    Article  Google Scholar 

  15. Xia, F., Wang, H., Hwang, J.C.M., Neto, A.H.C., Yang, L.: Black phosphorus and its isoelectronic materials. Nat. Rev. Mater. 1, 306 (2019)

    Google Scholar 

  16. Zhu, Z., Tománek, D.: Semiconducting layered blue phosphorus: a computational study. Phys. Rev. Lett. 112, 176802 (2014)

    Article  Google Scholar 

  17. Gu, C., Zhao, S., Zhang, J.L., Sun, S., Yuan, K., Hu, Z., Han, C., Ma, Z., Wang, L., Huo, F., Huang, W., Li, Z., Chen, W.: Growth of quasi-free-standing single-layer blue phosphorus on tellurium monolayer functionalized Au(111). ACS Nano 11, 4943 (2017)

    Article  Google Scholar 

  18. Zhang, J.L., Zhao, S., Han, C., Wang, Z., Zhong, S., Sun, S., Guo, R., Zhou, X., Gu, C.D., Yuan, K.D., Li, Z., Chen, W.: Epitaxial growth of single layer blue phosphorus: a new phase of two-dimensional phosphorus. Nano Lett. 16, 4903 (2016)

    Article  Google Scholar 

  19. Koenig, S.P., Doganov, R.A., Schmidt, H., Neto, A.H.C., Ozyilmaz, B.: Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014)

    Article  Google Scholar 

  20. Ziletti, A., Carvalho, A., Campbell, D.K., Coker, D.F., Castro Neto, A.H.: Oxygen defects in phosphorene. Phys. Rev. Lett. 114, 046801 (2015)

    Article  Google Scholar 

  21. Wang, G., Slough, W.J., Pandey, R., Karna, S.P.: Degradation of phosphorene in air: understanding at atomic level. 2D Mater. 3, 025011 (2016)

    Article  Google Scholar 

  22. Shen, H., Wang, H., Li, X., Niu, J.Z., Wang, H., Chen, X., Li, L.S.: Phosphine-free synthesis of high quality ZnSe, ZnSe/ZnS, and Cu- Mn-doped ZnSe nanocrystals. Dalton Trans. 47, 10534 (2009)

    Article  Google Scholar 

  23. Park, J.-C., Lee, J.-R., Al-Jassim, M., Kim, T.-W.: Bandgap engineering of Cu(In1-xGax)Se2 absorber layers fabricated using CuInSe2 and CuGaSe2 targets for one-step sputtering process. Opt. Mater. Express 6, 3541 (2016)

    Article  Google Scholar 

  24. Oueslati, S., Brammertz, G., Buffière, M., ElAnzeery, H., Mangin, D., ElDaif, O., Touayar, O., Köble, C., Meuris, M., Poortmans, J.: Study of alternative back contacts for thin film Cu2ZnSnSe4-based solar cells. J. Phys. D Appl. Phys. 48, 035103 (2014)

    Article  Google Scholar 

  25. Ban, C., Jiang, X., Li, L., Liu, X.: The piezoelectric and dielectric properties of flexible, nanoporous, self-assembled boron nitride nanotube thin films. J. Mater. Sci. 54, 14074 (2019)

    Article  Google Scholar 

  26. Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K.L., Hone, J.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722 (2010)

    Article  Google Scholar 

  27. Arjmandi-Tash, H.: In situ growth of graphene on hexagonal boron nitride for electronic transport applications. J. Mater. Chem. C 8, 380 (2020)

    Article  Google Scholar 

  28. Nguyen, V.H., Mazzamuto, F., Bournel, A., Dollfus, P.: Resonant tunnelling diodes based on graphene/h-BN heterostructure. J. Phys. D Appl. Phys. 45, 325104 (2012)

    Article  Google Scholar 

  29. Xiang, R., Inoue, T., Zheng, Y., Kumamoto, A., Qian, Y., Sato, Y., Liu, M., Tang, D., Gokhale, D., Guo, J., Hisama, K., Yotsumoto, S., Ogamoto, T., Arai, H., Kobayashi, Y., Zhang, H., Hou, B., Anisimov, A., Maruyama, M., Miyata, Y., Okada, S., Chiashi, S., Li, Y., Kong, J., Kauppinen, E.I., Ikuhara, Y., Suenaga, K., Maruyama, S.: One-dimensional van der Waals heterostructures. Science 367, 537 (2020)

    Article  Google Scholar 

  30. Duan, G., Cao, Y., Quan, J., Hu, Z., Wang, Y., Yu, J., Zhu, J.: Bioinspired construction of BN@polydopamine@Al2O3 fillers for preparation of a polyimide dielectric composite with enhanced thermal conductivity and breakdown strength. J Mater Sci 55, 8170 (2020)

    Article  Google Scholar 

  31. Kamal, C., Chakrabarti, A., Ezawa, M.: Direct band gaps in group IV-VI monolayer materials: binary counterparts of phosphorene. Phys. Rev. B 93, 125428 (2016)

    Article  Google Scholar 

  32. Zhu, Z., Guan, J., Liu, D., Tománek, D.: Designing isoelectronic counterparts to layered group V semiconductors. ACS Nano 9, 8284 (2015)

    Article  Google Scholar 

  33. Piazza, Z.A., Hu, H.-S., Li, W.-L., Zhao, Y.-F., Li, J., Wang, L.-S.: Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 5, 3113 (2014)

    Article  Google Scholar 

  34. Sofo, J.O., Chaudhari, A., Barber, G.D.: Graphane: a two-dimensional hydrocarbon. Phys. Rev. B 75, 153401 (2007)

    Article  Google Scholar 

  35. Mannix, A.J., Zhou, X., Kiraly, B., Wood, J.D., Alducin, D., Myers, B.D., Liu, X., Fisher, B.L., Santiago, U., Guest, J.R.: Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350, 1513 (2015)

    Article  Google Scholar 

  36. Elias, D.C., Nair, R., Mohiuddin, T., Morozov, S.V., Blake, P., Halsall, M.P., Ferrari, A., Boukhvalov, D.W., Katsnelson, M.I., Geim, A.K.: Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610 (2009)

    Article  Google Scholar 

  37. Yang, L., Ganz, E., Chen, Z., Wang, Z., Schleyer, P.V.R.: Four decades of the chemistry of planar hypercoordinate compounds. Angew. Chem. Int. Ed. 54, 9468 (2015)

    Article  Google Scholar 

  38. Kresse, G., Furthmuller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)

    Article  Google Scholar 

  39. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  40. Togo, A., Oba, F., Tanaka, I.: First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 78, 134106 (2008)

    Article  Google Scholar 

  41. Heydm, J., Scuseria, G. E., Ernzerhof, M.: Erratum: “hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] (2006). J. Chem. Phys. 124: 219906

  42. Rocca, D., Abboud, A., Vaitheeswaran, G., Lebegue, S.: Two-dimensional silicon and carbon monochalcogenides with the structure of phosphorene. Beilstein J. Nanotechnol. 8, 1338 (2017)

    Article  Google Scholar 

  43. Xia, F., Wang, H., Xiao, D., Dubey, M., Ramasubramaniam, A.: Two-dimensional material nanophotonics. Nat. Photon. 8, 899 (2014)

    Article  Google Scholar 

  44. Bernardi, M., Palummo, M., Grossman, J.C.: Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13, 3664 (2013)

    Article  Google Scholar 

  45. Peng, X., Wei, Q., Copple, A.: Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys. Rev. B 90, 085402 (2014)

    Article  Google Scholar 

  46. Zhang, Q., Feng, Y., Chen, X., Zhang, W., Wu, X., Wu, L., Wang, Y.: Structural and electronic anisotropy, negative Poisson’s ratio, strain-sensitive Dirac-like cone in monolayer α-CSe: tailoring electronic properties. Comput. Mater. Sci. 168, 87 (2019)

    Article  Google Scholar 

  47. Li, T., Morris, J.W., Chrzan, D.C.: Ideal tensile strength of B2 transition-metal aluminides. Phys. Rev. B 70, 054107 (2004)

    Article  Google Scholar 

  48. Zhou, J., Huang, R.: Internal lattice relaxation of single-layer graphene under in-plane deformation. J. Mech. Phys. Solids 56, 1609 (2008)

    Article  MATH  Google Scholar 

  49. Han, J., Xie, J., Zhang, Z., Yang, D., Si, M.S., Xue, D.: Negative Poisson’s ratios in few-layer orthorhombic arsenic: first-principles calculations. Appl. Phys. Express 8, 041801 (2015)

    Article  Google Scholar 

  50. Li, T.: Ideal strength and phonon instability in single-layer MoS2. Phys. Rev. B 85, 235407 (2012)

    Article  Google Scholar 

  51. Li, J., Medhekar, N.V., Shenoy, V.B.: Bonding charge density and ultimate strength of monolayer transition metal dichalcogenides. J. Phys. Chem. C 117, 15842 (2013)

    Article  Google Scholar 

  52. Kamal, C., Ezawa, M.: Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems. Phys. Rev. B 91, 085423 (2015)

    Article  Google Scholar 

  53. Wang, C., Xia, Q., Nie, Y., Guo, G.: Strain-induced gap transition and anisotropic Dirac-like cones in monolayer and bilayer phosphorene. J. Appl. Phys. 117, 124302 (2015)

    Article  Google Scholar 

  54. Wang, G., Si, M., Kumar, A., Pandey, R.: Strain engineering of Dirac cones in graphyne. Appl. Phys. Lett. 104, 213107 (2014)

    Article  Google Scholar 

  55. Wang, C., Xia, Q., Nie, Y., Rahman, M., Guo, G.: Strain engineering band gap, effective mass and anisotropic Dirac-like cone in monolayer arsenene. AIP Adv. 6, 035204 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (61664008), the Scientific and Technological Innovation Team (2017CXTD-01), and the High Education Key Program of Henan Province of China (no. 20A140021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuchun Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Zhang, F. First-principles study of two-dimensional puckered and buckled honeycomb-like carbon sulfur systems. J Comput Electron 20, 759–774 (2021). https://doi.org/10.1007/s10825-021-01666-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01666-y

Keywords

Navigation