Skip to main content
Log in

The Role of Anisotropic Proton Pressure in the Generation of Geomagnetic Pulsations

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—The effect of hot anisotropic plasma on the development of cyclotron instability in the near-Earth space plasma at finite plasma pressure \({{\beta }_{ \bot }}\) is studied. It is shown that the finiteness of \({{\beta }_{ \bot }}\)​ does not only modify the imaginary part of the dispersion equation which is associated with the amplification of waves but also changes the real part of this equation which describes wave propagation along the magnetic field lines. This leads to a change in the cyclotron instability increment and causes variations in the parameters of propagation of electromagnetic ion-cyclotron (EMIC) waves along a field line. The obtained results suggest that for the generation of EMIC waves in the near-Earth plasma, small values of perpendicular proton plasma pressure (\({{\beta }_{ \bot }}\)), large anisotropy values (\(A\)), and large values of \({{{{v}_{{\parallel h}}}} \mathord{\left/ {\vphantom {{{{v}_{{\parallel h}}}} {{{c}_{A}}}}} \right. \kern-0em} {{{c}_{A}}}}\) ratio are preferable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Berko, F.W., Cahill, L.J., Jr., and Fritz, T.A., Protons as the prime contributors to storm time ring current, J. Geophys. Res., 1975, vol. 80, no. 25, pp. 3549–3552.

    Article  Google Scholar 

  2. Bespalov, P.A. and Trakhtengerts, V.Yu., The cyclotron instability in the Earth radiation belts, in Reviews of Plasma Physics, vol. 10, Leonovich, M.A., Ed., New York: Consultants Bureau, 1986, pp. 155–192.

    Google Scholar 

  3. Cornwall, J.M., Micropulsations and the outer radiation zone, J. Geophys. Res., 1966, vol. 71, pp. 2185–2199.

    Article  Google Scholar 

  4. Demekhov, A.G., Recent progress in understanding Pc1 pearl formation, J. Atmos. Sol.-Terr. Phys., 2007, vol. 69, pp. 1609–1622.

    Article  Google Scholar 

  5. Feygin, F.Z. and Yakimenko, V.L., Generation mechanism and the development of “pearls” in cyclotron instability of the outer proton zone, Geomagn. Aeron., 1969, vol. 9, pp. 700–705.

    Google Scholar 

  6. Feygin, F.Z and Yakimenko, V.L., Appearance and development of geomagnetic Pc1 type micropulsations (“pearls”) due to cyclotron instability of proton belt, Ann. Geophys., 1971, vol. 27, pp. 49–55.

    Google Scholar 

  7. Gendrin, R., Lacourly, S., Roux, A., Solomon, J., Feygin, F.Z., Gokhberg, M.B., Troitskaya, V.A., and Yakimenko, V.L., Wave packet propagation in an amplifying medium and its application to the dispersion characteristics and to the generation mechanism of Pc1 events, Planet. Space Sci., 1971, vol. 19, pp. 165–194.

    Article  Google Scholar 

  8. Guglielmi, A.V., MGD volny v okolozemnoi plazme (MHD Waves in the Near-Earth Plasma), Moscow: Nauka, 1979.

  9. Guglielmi, A.V. and Polhotelov, O.A., Geoelectromagnetic Waves, Bristol: IOP Publ., 1996.

    Google Scholar 

  10. Kangas, J., Guglielmi, A., and Pokhotelov, O., Morphology and physics of the short period magnetic pulsations, Space Sci. Rev., 1998, vol. 83, pp. 435–512.

    Article  Google Scholar 

  11. Kennel, C.F. and Petschek, H.E., Limit on stably trapped particle fluxes, J. Geophys. Res., 1966, vol. 71, no. 1, pp. 1–28.

    Article  Google Scholar 

  12. Konradi, A., Williams, D.J., and Fritz, T.A., Energy spectra and pitch angle distributions of storm- time and substorm injected protons, J. Geophys. Res., 1973, vol. 78, no. 22, pp. 4739–4744.

    Article  Google Scholar 

  13. Longanecker, G.W. and Hoffman, R.A., S3-A spacecraft and experiment description, J. Geophys. Res., 1973, vol. 78, pp. 4711–4717.

    Article  Google Scholar 

  14. Ni, B., Cao, X., Shprits, Y., Summers, D., Gu, X., Fu, S., and Lou, Y., Hot plasma effects on the cyclotron-resonant pitch-angle scattering rates of radiation belt electrons due to EMIC waves, Geophys. Res. Lett., 2017, vol. 45, no. 1, pp. 21–30.

    Article  Google Scholar 

  15. Shafranov, V.D., Electromagnetic waves in plasma, in Voprosy teorii plazmy, vyp. 3 (Questions of Plasma Theory, no. 3), Leontovich, M.A., Ed., Moscow: Gosatomizdat, 1963, pp. 3–140.

  16. Smith, P.H. and Hoffman, R.A., Direct observations in the dusk hours of the characteristics of the storm time ring current particles during the beginning of magnetic storms, J. Geophys. Res., 1974, vol. 79, no. 7, pp. 966–971.

    Article  Google Scholar 

  17. Stix, T.H., The Theory of Plasma Waves, New York: McGraw-Hill, 1962.

    Google Scholar 

  18. Tang, Y., Zhao, J., Sun, H., Lu, J., and Wang, M., Effects of ion thermal pressure on wave properties of electromagnetic ion cyclotron waves in a H+-He+-O+ plasma, Phys. Plasmas, 2017, vol. 24, no. 5, Paper ID 052120. https://doi.org/10.1063/1.4983622

  19. Tverskoi, B.A., Dinamika radiatsionnykh poyasov Zemli (Dynamics of the Earth’s Radiation Belts), Moscow: Nauka, 1968.

  20. Wang, Q., Cao, X., Gu, X., Ni, B., Zhou, C., Shi, R., and Zhao, Z., A parametric study of the linear growth of magnetospheric EMIC waves in a hot plasma, Phys. Plasmas, 2016, vol. 23, no. 6, Paper ID 062903. https://doi.org/10.1063/1.4953565

  21. Yahnin, A.G., Yahnina, T.A., and Frey, H.U., Subauroral proton spots visualize the Pc1 source, J. Geophys. Res., 2007, vol. 112, Paper ID A10223. https://doi.org/10.1029/2007JA012501

  22. Yahnina, T.A., Frey, H.U., Bösinger, T., and Yahnin, A.G., Evidence for subaroral proton flashes on the dayside as the result of the ion cyclotron interaction, J. Geophys. Res: Atmos., 2008, vol. 113, Paper ID A07209. https://doi.org/10.1029/2008JA013099

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Z. Feygin.

Ethics declarations

The work was carried out in partial fulfillment of state contract of IPE RAS.

Additional information

Translated by M. Nazarenko

Appendices

APPENDIX A

In the case of the Maxwellian distribution with different temperatures along and across the magnetic field \({{T}_{\parallel }}\) and \({{T}_{ \bot }}\), the squared refractive index \({{N}^{2}} = {{k_{z}^{2}{{c}^{2}}} \mathord{\left/ {\vphantom {{k_{z}^{2}{{c}^{2}}} {{{\omega }^{2}}}}} \right. \kern-0em} {{{\omega }^{2}}}}\) of transverse waves with circular polarization which is presented in (Shafranov, 1963, p. 77, formula (9.36)) has the following form (\({{v}_{\parallel }} = \sqrt {{{2{{T}_{\parallel }}} \mathord{\left/ {\vphantom {{2{{T}_{\parallel }}} m}} \right. \kern-0em} m}} \)):

$$\begin{gathered} {{N}^{2}} = \varepsilon \pm g = 1 - \sum {\frac{{\omega _{0}^{2}}}{\omega }} \left\{ {\frac{1}{{\omega \mp {{\omega }_{B}}}}Z\left( {\frac{{\omega \mp {{\omega }_{B}}}}{{{{k}_{z}}{{v}_{\parallel }}}}} \right)} \right. \\ \times \,\,\left[ {\frac{{{{T}_{ \bot }}}}{{{{T}_{\parallel }}}} \pm \frac{{{{\omega }_{B}}}}{\omega }} \right.\left. {\left. {\left( {1 - \frac{{{{T}_{ \bot }}}}{{{{T}_{\parallel }}}}} \right)} \right] + \frac{1}{\omega }\left( {1 - \frac{{{{T}_{ \bot }}}}{{{{T}_{\parallel }}}}} \right)} \right\}. \\ \end{gathered} $$
(A.1)

(There are two equations in formula A.1, one with the upper signs and the other with the lower signs; and each equation defines its own wave type. The upper sign corresponds to the electromagnetic ion cyclotron (EMIC) waves which are considered in this paper).

We consider plasma consisting of cold electrons and ions with small admixture of hot anisotropic protons:

$$\begin{gathered} {{n}_{{0e}}} = {{n}_{{0i}}},\,\,\,\omega _{{0e}}^{2} = \frac{{4\pi n{{{\kern 1pt} }_{0}}{{e}^{2}}}}{{{{m}_{e}}}},\, \\ \omega _{{0i}}^{2} = \frac{{4\pi n{{{\kern 1pt} }_{0}}{{e}^{2}}}}{{{{m}_{i}}}},\,\,\,\,\omega _{{0h}}^{2} = \frac{{4\pi n{{{\kern 1pt} }_{h}}{{e}^{2}}}}{{{{m}_{i}}}}. \\ \end{gathered} $$

According to (Shafranov, 1963. p. 132 (II.5)),

$$\left. \begin{gathered} Z(z) = X(z) - iY(z); \hfill \\ X(z) = 2z{{e}^{{ - {{z}^{2}}}}}\int\limits_0^x {{{e}^{{{{t}^{2}}}}}} dt; \hfill \\ Y(z) = \sqrt \pi z{{e}^{{ - {{z}^{2}}}}}. \hfill \\ \end{gathered} \right\}$$
(A.2)

Function has the following asymptotic decomposition (Shfranov, 1963, p. 74):

$$X(z) = 1 + \frac{1}{{2{{z}^{2}}}} + \frac{3}{{4{{z}^{4}}}} + ...,$$
(A.3)

hence

$$Z\left( {\frac{{\omega - {{\omega }_{B}}}}{{{{k}_{z}}{{v}_{\parallel }}}}} \right) = 1 + \frac{{k_{z}^{2}v_{\parallel }^{2}}}{{{{{(\omega - {{\omega }_{B}})}}^{2}}}} + ...$$

and

$$\begin{gathered} {{N}^{2}} = 1 - \sum {\frac{{\omega _{0}^{2}}}{\omega }} \left\{ {\frac{1}{{\omega - {{\omega }_{B}}}}Z\left( {\frac{{\omega - {{\omega }_{B}}}}{{{{k}_{z}}{{v}_{\parallel }}}}} \right)} \right. \\ \left. {\left. { \times \,\,\left[ {\frac{{{{T}_{ \bot }}}}{{{{T}_{\parallel }}}} + \frac{{{{\omega }_{B}}}}{\omega }} \right.\left( {1 - \frac{{{{T}_{ \bot }}}}{{{{T}_{\parallel }}}}} \right)} \right] + \frac{1}{\omega }\left( {1 - \frac{{{{T}_{ \bot }}}}{{{{T}_{\parallel }}}}} \right)} \right\}. \\ \end{gathered} $$
(A.4)

Denoting \(\Omega = {{\omega }_{{Bi}}}\), \({{k}_{\parallel }} = {{k}_{z}}\), after summation over all particles (taking into account that \(\omega \ll {{\omega }_{{Be}}}\)), we have

$$\begin{gathered} \frac{{{{c}^{2}}k_{\parallel }^{2}}}{{{{\omega }^{2}}}} = 1 + \frac{{\omega _{{0i}}^{2}}}{{\Omega (\Omega - \omega )}} - \frac{{\omega _{{0h}}^{2}}}{\omega } \\ \times \,\,\left[ {Z\left( {\frac{{\omega - \Omega }}{{{{k}_{\parallel }}{{v}_{{\parallel h}}}}}} \right)\left( {\frac{A}{\omega } - \frac{1}{{\Omega - \omega }}} \right) - \frac{A}{\omega }} \right], \\ \frac{{{{c}^{2}}k_{\parallel }^{2}}}{{{{\omega }^{2}}}} + \frac{{\omega _{{0h}}^{2}}}{\omega }\frac{{k_{\parallel }^{2}v_{{\parallel h}}^{2}}}{{2{{{(\omega - \Omega )}}^{2}}}}\left( {\frac{A}{\omega } - \frac{1}{{\Omega - \omega }}} \right) \\ = 1 + \frac{{\omega _{{0i}}^{2}}}{{\Omega (\Omega - \omega )}} + \frac{{\omega _{{0h}}^{2}}}{{\omega (\Omega - \omega )}} \\ + \,\,i\sqrt \pi \frac{{\omega _{{0h}}^{2}}}{\omega }\frac{{\omega - \Omega }}{{{{k}_{\parallel }}{{v}_{{\parallel h}}}}}\exp \left[ { - {{{\left( {\frac{{\omega - \Omega }}{{{{k}_{\parallel }}{{v}_{{\parallel h}}}}}} \right)}}^{2}}} \right]\left( {\frac{A}{\omega } - \frac{1}{{\Omega - \omega }}} \right). \\ \end{gathered} $$
(A.5)

We transform this expression (\(v_{{\parallel h}}^{2} = {{2{{T}_{\parallel }}} \mathord{\left/ {\vphantom {{2{{T}_{\parallel }}} m}} \right. \kern-0em} m}\)):

$$\begin{gathered} \frac{{\omega _{{0h}}^{2}}}{\omega }\left[ {\frac{{k_{\parallel }^{2}v_{{\parallel h}}^{2}}}{{2{{{(\omega - \Omega )}}^{2}}}}} \right]\left( {\frac{A}{\omega } - \frac{1}{{\Omega - \omega }}} \right) = \frac{{4\pi {{n}_{h}}{{e}^{2}}}}{{m\omega }}\frac{{2{{T}_{ \bot }}B_{0}^{2}}}{{2{{T}_{ \bot }}B_{0}^{2}}} \\ \times \,\,\frac{{k_{\parallel }^{2}v_{{\parallel h}}^{2}}}{{2{{\Omega }^{2}}{{{\left( {\frac{\omega }{\Omega } - 1} \right)}}^{2}}}}\left( {\frac{A}{\omega } - \frac{1}{{\Omega - \omega }}} \right) \\ = \frac{{{{\beta }_{ \bot }}}}{{2m\omega }}\frac{{{{e}^{2}}B_{0}^{2}}}{{{{T}_{ \bot }}}}\frac{{{{m}^{2}}{{c}^{2}}k_{\parallel }^{2}v_{{\parallel h}}^{2}}}{{2{{e}^{2}}{{B}^{2}}{{{\left( {\frac{\omega }{\Omega } - 1} \right)}}^{2}}}}\left( {\frac{A}{\omega } - \frac{1}{{\Omega - \omega }}} \right) \\ = \frac{{{{c}^{2}}k_{\parallel }^{2}}}{{{{\omega }^{2}}}}\frac{{{{\beta }_{ \bot }}}}{2}\frac{{{{T}_{\parallel }}}}{{{{T}_{ \bot }}}}\frac{{\left[ {A(\Omega - \omega ) - \omega } \right]}}{{\Omega {{{\left( {1 - \frac{\omega }{\Omega }} \right)}}^{3}}}} \\ = \frac{{{{c}^{2}}k_{\parallel }^{2}}}{{{{\omega }^{2}}}}\frac{{{{\beta }_{ \bot }}}}{2}\frac{{\left[ {A\left( {1 - \frac{\omega }{\Omega }} \right) - \frac{\omega }{\Omega }} \right]}}{{(A + 1){{{\left( {1 - \frac{\omega }{\Omega }} \right)}}^{3}}}} \\ = \frac{{{{c}^{2}}k_{\parallel }^{2}}}{{{{\omega }^{2}}}}\frac{{{{\beta }_{ \bot }}}}{2}\frac{{\left[ {A(1 - x) - x} \right]}}{{(A + 1){{{(1 - x)}}^{3}}}} = \frac{{{{c}^{2}}k_{\parallel }^{2}}}{{{{\omega }^{2}}}}\frac{{{{\beta }_{ \bot }}}}{2}\frac{{(\tilde {A} - x)}}{{{{{(1 - x)}}^{3}}}}. \\ \end{gathered} $$

Here, \(x = {\omega \mathord{\left/ {\vphantom {\omega \Omega }} \right. \kern-0em} \Omega }\) and \(\tilde {A} = {{A{\kern 1pt} } \mathord{\left/ {\vphantom {{A{\kern 1pt} } {(A + 1)}}} \right. \kern-0em} {(A + 1)}}\).

Then, the dispersion equation takes on the following form:

$$\begin{gathered} \frac{{{{c}^{2}}k_{\parallel }^{2}}}{{{{\omega }^{2}}}}\left( {1 + \frac{{{{\beta }_{ \bot }}}}{2}\frac{{\left( {\tilde {A} - x} \right)}}{{{{{\left( {1 - x} \right)}}^{3}}}}} \right) = \frac{{\omega _{{0i}}^{2}}}{{\Omega (\Omega - \omega )}} \\ + \,\,\frac{{\omega _{{0h}}^{2}}}{\omega }\left[ {\left( {\frac{1}{{\Omega - \omega }}} \right)} \right] + i\sqrt \pi \frac{{\omega _{{0h}}^{2}}}{\omega }\frac{{\omega - \Omega }}{{k_{\parallel }^{2}v_{{\parallel h}}^{2}}} \\ \times \,\,\exp {{\left[ { - {{{\left( {\frac{{\omega - \Omega }}{{k_{\parallel }^{2}v_{{\parallel h}}^{2}}}} \right)}}^{2}}} \right]}^{{}}}\left( {\frac{A}{\omega } - \frac{1}{{\Omega - \omega }}} \right). \\ \end{gathered} $$
(A.6)

Next,

$$\begin{gathered} \frac{{\omega _{{0i}}^{2}{{\omega }^{2}}}}{{\Omega (\Omega - \omega )}} + {{\omega }^{2}}\frac{{\omega _{{0h}}^{2}}}{\omega }\left[ {\left( {\frac{1}{{\Omega - \omega }}} \right)} \right] \\ = \frac{{\omega _{{0i}}^{2}{{x}^{2}}}}{{(1 - x)}}\left( {1 + \frac{{{{n}_{h}}}}{{{{n}_{0}}}}\frac{1}{x}} \right) \approx \frac{{\omega _{{0i}}^{2}{{x}^{2}}}}{{(1 - x)}}. \\ \end{gathered} $$
(A.7)

In the last formula it is assumed that \(\frac{{{{n}_{h}}}}{{{{n}_{0}}}}\frac{1}{x} \ll 1\) and \(x = {\omega \mathord{\left/ {\vphantom {\omega \Omega }} \right. \kern-0em} \Omega }\).

Thus, the dispersion formula for the considered waves is

$$\begin{gathered} \frac{{{{c}^{2}}k_{\parallel }^{2}}}{{\omega _{{0i}}^{2}}}\left[ {1 + \frac{{{{\beta }_{ \bot }}}}{2}\frac{{\tilde {A} - x}}{{{{{(1 - x)}}^{3}}}}} \right] = \frac{{{{x}^{2}}}}{{(1 - x)}} \\ - \,\,i\sqrt \pi \omega \frac{{\omega _{{0h}}^{2}}}{{\omega _{{0i}}^{2}}}\frac{{\Omega - \omega }}{{{{k}_{\parallel }}{{v}_{{\parallel h}}}}}\exp \left[ { - {{{\left( {\frac{{\omega - \Omega }}{{{{k}_{\parallel }}{{v}_{{\parallel h}}}}}} \right)}}^{2}}} \right]\left( {\frac{A}{\omega } - \frac{1}{{\Omega - \omega }}} \right). \\ \end{gathered} $$

Taking into account that \(F = 1 + \frac{{{{\beta }_{ \bot }}}}{2}\frac{{\tilde {A} - x}}{{{{{(1 - x)}}^{3}}}}\) and \(\frac{{\omega _{{0h}}^{2}}}{{\omega _{{0i}}^{2}}} = \frac{{{{n}_{h}}}}{{{{n}_{0}}}}\), we obtain the above formula in the form

$$\begin{gathered} \frac{{{{c}^{2}}k_{\parallel }^{2}}}{{\omega _{{0i}}^{2}}}F = \frac{{{{x}^{2}}}}{{(1 - x)}} - i\sqrt \pi \frac{{{{n}_{h}}}}{{{{n}_{0}}}}\frac{1}{{{{k}_{\parallel }}{{v}_{{\parallel h}}}}} \\ \times \,\,\frac{{(A + 1)(\tilde {A} - x)}}{x}\exp \left[ { - {{{\left( {\frac{{\omega - \Omega }}{{{{k}_{\parallel }}{{v}_{{\parallel h}}}}}} \right)}}^{2}}} \right]. \\ \end{gathered} $$
(A.8)

With the allowance for \(\frac{1}{{{{k}_{\parallel }}{{v}_{{\parallel h}}}}} = \frac{{{{{(1 - x)}}^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}}}}{x}\frac{{{{c}_{A}}}}{{{{v}_{{\parallel h}}}}}\frac{1}{\Omega }{{F}^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}}\), formula (A.8) transforms into

$$\begin{gathered} \frac{{{{c}^{2}}k_{\parallel }^{2}}}{{\omega _{{0i}}^{2}}}F = \frac{{{{x}^{2}}}}{{(1 - x)}} - i\sqrt \pi \frac{{\omega _{{0h}}^{2}}}{{\omega _{{0i}}^{2}}}\frac{{{{{\left( {1 - x} \right)}}^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}}}}{x} \\ \times \,\,\left( {\frac{{{{c}_{A}}}}{{{{v}_{{\parallel h}}}}}} \right){{F}^{{1{\text{/}}2}}}\left[ {A\left( {1 - x} \right) - x} \right]\exp \left[ { - {{{\left( {\frac{{\omega - \Omega }}{{{{k}_{\parallel }}{{v}_{{\parallel h}}}}}} \right)}}^{2}}} \right]. \\ \end{gathered} $$
(A.9)

This expression almost coincides with the dispersion equation (2).

Then, using denotations \({{c}^{2}}{{k_{\parallel }^{2}} \mathord{\left/ {\vphantom {{k_{\parallel }^{2}} {\omega _{{0i}}^{2}}}} \right. \kern-0em} {\omega _{{0i}}^{2}}} = {{k}^{2}}\) and \(\tilde {A} = {A \mathord{\left/ {\vphantom {A {(A + 1)}}} \right. \kern-0em} {(A + 1)}}\), we obtain

$$\begin{gathered} {{k}^{2}}F = \frac{{{{x}^{2}}}}{{(1 - x)}} - i\sqrt \pi \frac{{{{n}_{h}}}}{{{{n}_{0}}}}\frac{{{{{(1 - x)}}^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}}}}{x}\frac{{{{c}_{A}}}}{{{{v}_{{\parallel h}}}}} \\ \times \,\,{{F}^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}}(A + 1)(\tilde {A} - x)\exp \left[ { - \frac{{{{{(1 - x)}}^{3}}}}{{{{x}^{2}}}}{{{\left( {\frac{{{{c}_{A}}}}{{{{v}_{{\parallel h}}}}}} \right)}}^{2}}F} \right]. \\ \end{gathered} $$
(A.10)

Derivation of Increment

The full dispersion equation for the considered waves has the following form (Appendix A):

$$\begin{gathered} {{k}^{2}}F = \frac{{{{x}^{2}}}}{{(1 - x)}} - i\sqrt \pi \frac{{{{n}_{h}}}}{{{{n}_{0}}}}\frac{{{{{(1 - x)}}^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}}}}{x}\frac{{{{c}_{A}}}}{{{{v}_{{\parallel h}}}}}{{F}^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}}(A + 1) \\ \times \,\,(\tilde {A} - x)\exp \left[ { - \frac{{{{{(1 - x)}}^{3}}}}{{{{x}^{2}}}}{{{\left( {\frac{{{{c}_{A}}}}{{{{v}_{{\parallel h}}}}}} \right)}}^{2}}F} \right], \\ \end{gathered} $$
(B.1)

where \({{c}_{A}} = {{{{B}_{0}}} \mathord{\left/ {\vphantom {{{{B}_{0}}} {\sqrt {4\pi {{n}_{0}}{{m}_{i}}} }}} \right. \kern-0em} {\sqrt {4\pi {{n}_{0}}{{m}_{i}}} }}\); \({{v}_{{\parallel h}}} = \sqrt {{{2{{T}_{\parallel }}} \mathord{\left/ {\vphantom {{2{{T}_{\parallel }}} {{{m}_{i}}}}} \right. \kern-0em} {{{m}_{i}}}}} \); \(F = 1 + \frac{{{{\beta }_{ \bot }}}}{2}\frac{{\tilde {A} - x}}{{{{{(1 - x)}}^{3}}}}\); \(\tilde {A} = \frac{A}{{A + 1}}\); \(k = \frac{x}{{{{{(1 - x)}}^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}}}}\frac{1}{{{{F}^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}}}}\); \(x = {\omega \mathord{\left/ {\vphantom {\omega \Omega }} \right. \kern-0em} \Omega },\) \(\omega = {{\omega }_{r}} + i\gamma \).

We then use the standard formula for determining the increment \(\gamma = - \frac{{\operatorname{Im} \varepsilon (\omega ,{{k}_{\parallel }})}}{{\partial \operatorname{Re} {{\varepsilon (\omega ,{{k}_{\parallel }})} \mathord{\left/ {\vphantom {{\varepsilon (\omega ,{{k}_{\parallel }})} {\partial \omega }}} \right. \kern-0em} {\partial \omega }}}}.\)

The applicability of the formula is ensured by the smallness of ratio \({{{{n}_{h}}} \mathord{\left/ {\vphantom {{{{n}_{h}}} {{{n}_{0}}}}} \right. \kern-0em} {{{n}_{0}}}}\). From (B.1), we have

$$\begin{gathered} \frac{\partial }{{\partial \omega }}\operatorname{Re} \varepsilon (\omega ,{{k}_{\parallel }}) = \frac{1}{\Omega }\left( {\frac{{\partial {{\varepsilon }_{r}}}}{{\partial x}}} \right) = \frac{1}{\Omega }\left( {{{k}^{2}}\frac{{\partial F}}{{\partial x}} - \frac{\partial }{{\partial x}}\frac{{{{x}^{2}}}}{{1 - x}}} \right) \\ = \frac{1}{\Omega }\left( {\frac{{{{x}^{2}}}}{{1 - x}}\frac{{\partial F}}{{F\partial x}} - \frac{\partial }{{\partial x}}\frac{{{{x}^{2}}}}{{1 - x}}} \right) \\ = \frac{1}{\Omega }\left[ {\frac{{{{x}^{2}}}}{{1 - x}}\frac{{\partial \ln F}}{{\partial x}} - \frac{{x(2 - x)}}{{{{{(1 - x)}}^{2}}}}} \right] \\ = - \frac{1}{\Omega }\frac{{x(2 - x)}}{{{{{(1 - x)}}^{2}}}}\left[ {1 - \frac{{x(1 - x)}}{{(2 - x)}}\frac{{\partial \ln F}}{{\partial x}}} \right]. \\ \end{gathered} $$
(B.2)
$$\begin{gathered} \operatorname{Im} \varepsilon (\omega ,{{k}_{\parallel }}) = \sqrt \pi \frac{{{{n}_{h}}}}{{{{n}_{0}}}}\frac{{{{{(1 - x)}}^{{1/2}}}}}{x}\frac{{{{c}_{A}}}}{{{{v}_{{\parallel h}}}}}{{F}^{{1/2}}}(A + 1) \\ \times \,\,(\tilde {A} - x)\exp \left[ { - \frac{{{{{(1 - x)}}^{3}}}}{{{{x}^{2}}}}{{{\left( {\frac{{{{c}_{A}}}}{{{{v}_{{\parallel h}}}}}} \right)}}^{2}}F} \right]. \\ \end{gathered} $$

As a result, we obtain the expression for the normalized increment (formula (2) in the main text of this paper):

$$\begin{gathered} \frac{\gamma }{\Omega } = {{\pi }^{{1/2}}}\frac{{{{n}_{h}}}}{{{{n}_{0}}}}\frac{{{{c}_{A}}}}{{{{v}_{{\parallel h}}}}}\frac{{(A + 1)(\tilde {A} - x){{{(1 - x)}}^{{{5 \mathord{\left/ {\vphantom {5 2}} \right. \kern-0em} 2}}}}{{F}^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}}}}{{{{x}^{2}}(2 - x)\left[ {1 - \frac{{x(1 - x)}}{{(2 - x)}}\frac{{\partial \ln F}}{{\partial x}}} \right]}} \\ \times \,\,\exp \left[ { - \frac{{{{{(1 - x)}}^{3}}}}{{{{x}^{2}}}}{{{\left( {\frac{{{{c}_{A}}}}{{{{v}_{{\parallel h}}}}}} \right)}}^{2}}F} \right]. \\ \end{gathered} $$
(B.3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feygin, F.Z., Khabazin, Y.G. The Role of Anisotropic Proton Pressure in the Generation of Geomagnetic Pulsations. Izv., Phys. Solid Earth 57, 54–60 (2021). https://doi.org/10.1134/S1069351321010031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351321010031

Keywords:

Navigation