Skip to main content
Log in

Bioactive compounds conservation and energy-mass analysis in the solar greenhouse drying of blackberry pulps

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Recently, the quality of food solar dried has been associated to solar irradiance, irradiation and UV-light. Different materials used as covering materials in direct solar dryers had different optical properties, thus, different quality should be expected in solar food drying. The objective of this study was to compare two direct solar dryers builder with different covering materials: Direct Solar Drying with Poly (methyl methacrylate) (DSD), and Greenhouse Solar Drying with polyethylene (SGD), based on their three aspects: chemical composition, heat-mass transference, economic-environmental effect. Chemical composition was evaluated as the total phenolic compounds (TPC), flavonoids (TF) anthocyanins (TA) and antioxidant activity (AA) of blackberry pulp (Rubus spp). Dehydrated blackberry pulp contains lower TA than raw samples because TA is sensitive to solar irradiation and UV solar irradiation. TPC, TF and AA averages do not show significant differences among all the drying processes. Evaluation of energy and heat transfer in the evaporative and diffusive periods of the drying technologies led to an assessment of the return of investment period for DSD and SGD technologies for different power sources. The results suggest payback periods between 39 and 121 months, considering only the 6 months of harvest duration without using the solar dryers the rest of the year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All relevant data are available in this paper.

Abbreviations

As :

Food product surface area (m2)

Cpds :

Heat capacity of the dry solid (J/ (kg °C))

Cpw :

Heat capacity of the water (J/ (kg °C))

Cpha :

Heat capacity of the humid air (J/ (kg °C))

Dab :

Molecular diffusivity of the water in the air (m2/s)

DAx :

Diffusive coefficient (m2/s)

Deff :

Effective moisture diffusivity (m2/s)

Deff, var :

Variable effective moisture diffusivity (m2/s)

hH :

Heat transfer coefficient (W/m2 K)

hm :

Mass transfer coefficient (kg/m2 s)

Iin :

Solar irradiance inside of the greenhouse dryer (W/m2)

k a :

Air thermal conductivity (W/m2 K)

l:

Characteristic length (m)

l0 :

Sample thickness (m)

MR:

Moisture content ratio (Dimensionless)

mp :

Mass of the product (kg)

mds :

Mass of dry solid (kg)

qc :

Thermal energy transferred by convection (MJ)

qs :

Energy loss due conduction heat (MJ)

qv :

Thermal energy required for water evaporation (MJ)

t:

Time (min)

T:

Temperature (K)

Ta :

Air drying temperature (K)

Ts :

Temperature of the food sample (K)

va :

Air velocity (m/s)

Vair, in :

Air velocity inside the greenhouse dryer (m/s)

X(t) :

Moisture content at any time (kgwater/kgdried solid)

Xe :

Moisture content at the equilibrium (kgwater/kgdried solid)

X0 :

Initial moisture content (kgwater/kgdried solid)

α:

Absorptance the food product

λ:

Latent heat of vaporization (kJ/kg)

Ø:

Diameter (m)

μ:

Viscosity (kg/m s)

ρ:

Density (kg/m3)

a:

Dry air

Ex:

Experimental

ha:

Humid air

o:

Initial

p:

Food product

s:

Surface of the product

Th:

Theoretical

w:

Water

ex:

Experimental

Fo:

Fourier number

Gr:

Grashof number

\( \overline{\mathrm{Nu}} \) :

Nusselt number

Pr:

Prandtl number

Re:

Reynolds number

Sc:

Schmidt number

\( \overline{\mathrm{Sh}} \) :

Sherwood number

References

  1. SIAP. (2019). Servicio de Información Agroalimentaria y Pesquera | Gobierno | gob.mx. Expectativas Agroalimentarias 2019

  2. FAOSTAT (2019) FAOSTAT statistics database. In FAOSTAT Statistics Database - Food and Agriculture Organization of the United Nations https://doi.org/10.1002/embj.201488027

  3. Fernandes L, Casal S, Pereira JA, Saraiva JA, Ramalhosa E (2017) Edible flowers: a review of the nutritional, antioxidant, antimicrobial properties and effects on human health. J Food Compos Anal 60:38–50. https://doi.org/10.1016/J.JFCA.2017.03.017

    Article  Google Scholar 

  4. Kaume L, Howard LR, Devareddy L (2012) The blackberry fruit: a review on its composition and chemistry, metabolism and bioavailability, and health benefits. J Agric Food Chem. https://doi.org/10.1021/jf203318p

  5. Cho MJ, Howard LR, Prior RL, Clark JR (2004) Flavonoid glycosides and antioxidant capacity of various blackberry, blueberry and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry. J Sci Food Agric 84(13):1771–1782. https://doi.org/10.1002/jsfa.1885

    Article  Google Scholar 

  6. Gu L, Kelm MA, Hammerstone JF, Beecher G, Holden J, Haytowitz D, Gebhardt S, Prior RL (2004) Concentrations of Proanthocyanidins in common foods and estimations of Normal consumption. J Nutr. https://doi.org/10.1093/jn/134.3.613

  7. Connor AM, Finn CE, Alspach PA (2005) Genotypic and environmental variation in antioxidant activity and total phenolic content among blackberry and hybridberry cultivars. J Am Soc Horticultural Sci. https://doi.org/10.21273/jashs.130.4.527

  8. Fan-Chiang H-J, Wrolstad RE (2006) Anthocyanin pigment composition of blackberries. J Food Sci. https://doi.org/10.1111/j.1365-2621.2005.tb07125.x

  9. Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiology 133(4):1420 LP–1421428

    Article  Google Scholar 

  10. Hatier J-HB, Gould KS (2009) Anthocyanin function in vegetative organs. In: Winefield C, Davies K, Gould K (eds) Anthocyanins: Biosynthesis, Functions, and Applications (pp. 1–19). Springer, New York. https://doi.org/10.1007/978-0-387-77335-3_1

    Chapter  Google Scholar 

  11. López-Ortiz A, Méndez-Lagunas LL, Delesma C, Longoria A, Escobar J, Muñiz J (2020) Understanding the drying kinetics of phenolic compounds in strawberries: an experimental and density functional theory study. Innovative Food Sci Emerg Technol 60:102283. https://doi.org/10.1016/j.ifset.2019.102283

    Article  Google Scholar 

  12. Fabani MP, Baroni MV, Luna L, Lingua MS, Monferran MV, Paños H, Tapia A, Wunderlin DA, Feresin GE (2017) Changes in the phenolic profile of Argentinean fresh grapes during production of sun-dried raisins. J Food Compos Anal. https://doi.org/10.1016/j.jfca.2017.01.006

  13. Acosta-Montoya Ó, Vaillant F, Cozzano S, Mertz C, Pérez AM, Castro MV (2010) Phenolic content and antioxidant capacity of tropical highland blackberry (Rubus adenotrichus Schltdl.) during three edible maturity stages. Food Chem 119(4):1497–1501. https://doi.org/10.1016/J.FOODCHEM.2009.09.032

    Article  Google Scholar 

  14. Wang SY, Chen CT, Wang CY (2009) The influence of light and maturity on fruit quality and flavonoid content of red raspberries. Food Chem 112(3):676–684. https://doi.org/10.1016/j.foodchem.2008.06.032

    Article  Google Scholar 

  15. Morales Arellano, Y., & Cantillo Sánchez, E. (2017). Red de comercialización de zarzamora en Los Reyes, MichoacánTrade network of blackberry fruit in Los Reyes, Michoacan. In COMMERCIUM PLUS (Vol. 1, Issue 2). http://revistasacademicas.ucol.mx/index.php/commercium_plus/article/view/1575

  16. Bustos MC, Rocha-Parra D, Sampedro I, De Pascual-Teresa S, León AE (2018) The influence of different air-drying conditions on bioactive compounds and antioxidant activity of berries. J Agric Food Chem 66(11):2714–2723. https://doi.org/10.1021/acs.jafc.7b05395

    Article  Google Scholar 

  17. Méndez-Lagunas L, Rodríguez-Ramírez J, Cruz-Gracida M, Sandoval-Torres S, Barriada-Bernal G (2017) Convective drying kinetics of strawberry (Fragaria ananassa): effects on antioxidant activity, anthocyanins and total phenolic content. Food Chem 230:174–181. https://doi.org/10.1016/J.FOODCHEM.2017.03.010

    Article  Google Scholar 

  18. López J, Vega-Gálvez A, Torres MJ, Lemus-Mondaca R, Quispe-Fuentes I, Di Scala K (2013) Effect of dehydration temperature on physico-chemical properties and antioxidant capacity of goldenberry (Physalis peruviana L.). Chilean J Agric Res 73(3):293–300. https://doi.org/10.4067/S0718-58392013000300013

    Article  Google Scholar 

  19. Madrau MA, Piscopo A, Sanguinetti AM, Del Caro A, Poiana M, Romeo FV, Piga A (2009) Effect of drying temperature on polyphenolic content and antioxidant activity of apricots. Eur Food Res Technol 228(3):441–448. https://doi.org/10.1007/s00217-008-0951-6

    Article  Google Scholar 

  20. Satanina V, Kalt W, Astatkie T, Havard P, Martynenko A (2014) Comparison of anthocyanin concentration in blueberries processed using Hydrothermodynamic technology and conventional processing technologies. J Food Process Eng 37(6):609–618. https://doi.org/10.1111/jfpe.12117

    Article  Google Scholar 

  21. Nair PK, Espinosa-Santana AL, Guerrero-Martínez L, López-Ortiz A, Nair MTS (2020) Prospects toward UV-blue filtered solar drying of agricultural farm produce using chemically deposited copper chalcogenide thin films on cellular polycarbonate. Sol Energy 203:123–135. https://doi.org/10.1016/j.solener.2020.04.012

    Article  Google Scholar 

  22. Lakshmi DVN, Muthukumar P, Ekka JP, Nayak PK, Layek A (2019) Performance comparison of mixed mode and indirect mode parallel flow forced convection solar driers for drying Curcuma zedoaria. J Food Process Eng 42(4). https://doi.org/10.1111/jfpe.13045

  23. Castillo Téllez M, Pilatowsky Figueroa I, Castillo Téllez B, López Vidaña EC, López Ortiz A (2018) Solar drying of Stevia (Rebaudiana Bertoni) leaves using direct and indirect technologies. Sol Energy 159. https://doi.org/10.1016/j.solener.2017.11.031

  24. Román-Roldán N, López-Ortiz A, Ituna-Yudonago J, García-Valladares O, Pilatowsky-Figueroa I (2019) Computational fluid dynamics analysis of heat transfer in a greenhouse solar dryer “chapel-type” coupled to an air solar heating system. Energy Sci Eng. https://doi.org/10.1002/ese3.333

  25. Altuglas International. (2016) Plexiglas optical and transmission characteristics 1

  26. Kaveh M, Taghinezhad E, Aziz M (2020) Effects of physical and chemical pretreatments on drying and quality properties of blackberry ( Rubus spp.) in hot air dryer. Food Science & Nutrition 8(7):3843–3856. https://doi.org/10.1002/fsn3.1678

    Article  Google Scholar 

  27. Von TJ, Mabry KRM u MBT (1971) The Systematic Identification of Flavonoids. Von T. J. Mabry, K. R. Markham und M. B. Thomas. 354 S. mit 325 Abb., Springer-Verlag Berlin – Heidelberg – New York 1970, Preis: DM 98. Arch Pharm. https://doi.org/10.1002/ardp.19713040918

  28. Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. https://doi.org/10.1016/S0308-8146(98)00102-2

  29. Lee J, Durst RW, Wrolstad RE (2005) Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J AOAC Int

  30. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28(1):25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  Google Scholar 

  31. Sandoval Torres S, Allier González AL (2015) Linear and nonlinear drying behavior in tuberous crop slices. Dry Technol 33(5):559–569. https://doi.org/10.1080/07373937.2014.955919

    Article  Google Scholar 

  32. Fu BA, Chen MQ, Li QH, Song JJ (2018) Non-equilibrium thermodynamics approach for the coupled heat and mass transfer in microwave drying of compressed lignite sphere. Appl Therm Eng 133:237–247. https://doi.org/10.1016/j.applthermaleng.2018.01.036

    Article  Google Scholar 

  33. Zecchi B, Gerla P (2020) Effective diffusion coefficients and mass flux ratio during osmotic dehydration considering real shape and shrinkage. J Food Eng 274:109821. https://doi.org/10.1016/j.jfoodeng.2019.109821

    Article  Google Scholar 

  34. Koua BK, Koffi PME, Gbaha P (2019) Evolution of shrinkage, real density, porosity, heat and mass transfer coefficients during indirect solar drying of cocoa beans. J Saudi Soc Agric Sci 18(1):72–82. https://doi.org/10.1016/j.jssas.2017.01.002

    Article  Google Scholar 

  35. Farid M (2019) Heat and mass transfer in food processing. https://doi.org/10.1016/B978-0-12-814803-7.00017-8

  36. Frisch HL (1970) Diffusion in polymers edited by J. Crank and G. S. Park, Academic Press, London and New York, 1968; 452 pg. J Appl Polym Sci 14(6):1657. https://doi.org/10.1002/app.1970.070140623

    Article  Google Scholar 

  37. Karathanos VT, Villalobos G, Saravacos GD (1990) Comparison of two methods of estimation of the effective moisture diffusivity from drying data. J Food Sci. https://doi.org/10.1111/j.1365-2621.1990.tb06056.x

  38. López-Ortiz A, Gallardo-Brígido JC, Silva-Norman A, Pilatowsky-Figueroa I, García-Valladares O, Rodríguez-Ramírez J (2018a) Moisture content modeling and effective moisture diffusivity determination during convective solar drying of blackberry (rubus spp) and basil (Ocimum basilicum L.). IDS’2018 – 21st International Drying Symposium, València, Spain, 11-14 September 2018, 11–14. https://doi.org/10.4995/ids2018.2018.7841

  39. López-Ortiz A, Rodríguez-Ramírez J, Méndez-Lagunas LL, Martynenko A, Pilatowsky-Figueroa I (2018b) Non-isothermal drying of garlic slices (Allium sativum, L.): wave period and initial temperature of the heating/cooling effect. Food Bioprod Process 111:83–92. https://doi.org/10.1016/j.fbp.2018.06.005

    Article  Google Scholar 

  40. Perry RH, Green DW (2004) Perrys’ chemical engineers’ handbook 7th. In Mcgraw-Hill/Interamericana editores, S.A. de C.V. https://doi.org/10.1036/0071511245

  41. Serth RW, Lestina TG (2014) Process heat transfer: principles, applications and rules of thumb: second edition. In Process Heat Transfer: Principles, Applications and Rules of Thumb: Second Edition https://doi.org/10.1016/C2011-0-07242-3

  42. Montgomery DC (2012) Design and analysis of experiments eighth edition. In Design (eighth Edi, Vol. 2). John Wiley & Sons, Inc. https://doi.org/10.1198/tech.2006.s372

  43. Peñarrieta JM, Salluca T, Tejeda L, Alvarado JA, Bergenståhl B (2011) Changes in phenolic antioxidants during chuño production (traditional Andean freeze and sun-dried potato). J Food Compos Anal. https://doi.org/10.1016/j.jfca.2010.10.006

  44. Geankoplis CJ (2003) Transport processes and separation process principles: includes unit operations. In Transport Processes and Separation Process Principles (Includes Unit Operations)

  45. Chua KJ, Chou SK, Ho JC, Mujumdar AS, Hawlader MNA (2000) Cyclic air temperature drying of guava pieces: effects on moisture and ascorbic acid contents. Food Bioproducts Process: Trans Instit Chem Eng Part C 78(2):72–78. https://doi.org/10.1205/096030800532761

    Article  Google Scholar 

  46. Martynenko A, Kudra T (2015) Non-isothermal drying of medicinal plants. Dry Technol 33(13):1550–1559. https://doi.org/10.1080/07373937.2015.1010209

    Article  Google Scholar 

  47. Vagenas GK, Karathanos VT (1993) Prediction of the effective moisture diffusivity in gelatinized food systems. J Food Eng 18(2):159–179. https://doi.org/10.1016/0260-8774(93)90034-H

    Article  Google Scholar 

  48. Sharma GP, Prasad S (2004) Effective moisture diffusivity of garlic cloves undergoing microwave-convective drying. J Food Eng. https://doi.org/10.1016/j.jfoodeng.2004.02.027

  49. Eminoğlu MB, Yegül U, Sacilik K (2019) Drying characteristics of blackberry fruits in a convective hot-air dryer. HortScience 54(9):1546–1550. https://doi.org/10.21273/HORTSCI14201-19

    Article  Google Scholar 

  50. INECC And SEMARNAT (2014) Factores de emisión para los diferentes tipos de combustibles fósiles y alternativos que se consumen en México

  51. PEMEX. (2015). Hoja de datos de seguridad gas natural hds-pemex-tri-sac-9

  52. CRE. (2017) Factor de emisión del sector eléctrico nacional

  53. Banxico (n.d.) Banxico, banco central, Banco de México. Retrieved October 31, 2020, from https://www.banxico.org.mx/. Accessed 31 Oct 2020

Download references

Acknowledgments

This study was supported by the IER of the Universidad Nacional Autónoma de México and the CONACyT, Cátedras-CONACyT 352 project. The authors thanks to ESOLMET solar station in the IER-UNAM for the UV and solar irradiance data and IER’s solar drying laboratory for the infrastructure used. We thank Prof. P.K. Nair for enlightening comments on this paper. We thank Laura Guerrero Martínez for the determination of polyethylene optical properties. Also, we thank Iván Román Roldán for the schemes.

Funding

This study was supported by the IER of the Universidad Nacional Autónoma de México and the CONACyT, Cátedras-CONACyT 352 project.

Author information

Authors and Affiliations

Authors

Contributions

A. López Ortiz and Octavio García Valladares conceived the experiments, A. López Ortiz and Azucena Silva Norman performed the experiments and A. López Ortiz and Octavio García Valladares analyzed the results. All authors wrote and reviewed the manuscript.

Corresponding author

Correspondence to Anabel López-Ortiz.

Ethics declarations

Conflicts of interest/competing interests

All authors declare not conflicts of interest.

Code availability

We do not use any special software for this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Ortiz, A., Silva Norman, A. & García Valladares, O. Bioactive compounds conservation and energy-mass analysis in the solar greenhouse drying of blackberry pulps. Heat Mass Transfer 57, 1347–1361 (2021). https://doi.org/10.1007/s00231-021-03039-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-021-03039-4

Navigation