Skip to main content

Advertisement

Log in

Monitoring a storm surge during Hurricane Harvey using multi-constellation GNSS-Reflectometry

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Storm surges, one of the major causes of hurricane damage, lead to an abnormal rapid rise in water levels of up to a few feet for several minutes due to low pressure, strong winds, and high waves caused by a hurricane. This study utilizes GNSS-Reflectometry (GNSS-R) to monitor the unexpected water level change due to a storm surge using multi-frequency, multi-constellation GNSS. With an enhanced spectral analysis based on multiple frequency GNSS signals and statistical data processing, the proposed approach detected the signature of storm surge on the water level and improved the overall capability of GNSS-R-based water level measurements in terms of accuracy and temporal resolution. Suggested algorithms were validated by a case study for detecting a storm surge during Hurricane Harvey in 2017. The one month of data processing result showed a strong correlation with the co-located tide gauge even during the extreme storm surge when the correlation coefficient was 0.97. In addition, we quantified the impact of involving multiple constellations GNSS regarding their improvement of accuracy and the temporal resolution of water level measurements. The results reveal that all GNSS constellations generated consistent measurements, the water level accuracy was improved by multi-frequency signals, and the temporal resolution was significantly improved by having an increased number of GNSS observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson, KD (1994) Tropospheric refractivity profiles inferred from low elevation angle measurements of Global Positioning System (GPS) signals. In: Proceeding of the AGARD conference the sensor and propagation panel symposium, Bremerhaven, Germany

  • Anderson KD (2000) Determination of water level and tides using interferometric observations of GPS signals. J Atmos Ocean Technol 17(8):1118–1127

    Article  Google Scholar 

  • Avsar NB, Jin S, Kutoglu H, Gurbuz G (2016) Sea level change along the Black Sea coast from satellite altimetry, tide gauge and GPS observations. Geodesy Geodyn 7(1):50–55

    Article  Google Scholar 

  • Beckheinrich J, Hirrle A, Schon S, Beyerle G, Semmling M, Wickert J (2014) Water level monitoring of the Mekong Delta using GNSS reflectometry technique. In: Proceeding of 2014 IEEE geoscience and remote sensing symposium, Ouebec City, QC, Canada

  • Beckheinrich J, Beyerle G, Schoen S, Apel H, Semmling M, Wickert J (2012) WISDOM: GNSS-R based flood monitoring. In: Proceeding of 2012 workshop on reflectometry using GNSS and other signals of opportunity: (GNSS+R), West Lafayette, IN, USA

  • Bilich A, Larson KM (2007) Mapping the GPS multipath environment using the signal-to-noise ratio (SNR). Radio Sci 42(2):RS6003

    Google Scholar 

  • Bilich A, Larson KM, Axelrad P (2008) Modeling GPS phase multipath with SNR: Case study from the Salar de Uyuni Boliva. J Geophys Res 113(B4):B04401

    Article  Google Scholar 

  • Cooper CK, Forristall GZ (1997) The use of satellite altimeter data to estimate the extreme wave climate. J Atmos Ocean Technol 14(2):254–266

    Article  Google Scholar 

  • Edwing R (2015) Approval of revised policy for management and dissemination of external source water level data. Washington, DC: United States Department of Commerce, 11. http://www.ioosassociation.org/sites/nfra/files/documents/boardmaterials/meetingmaterials/springmeeting2016/External_Source_Policy_22December2015.pdf.

  • Fenoglio-Marc L, Schöne T, Illigner J, Becher M, Manurung P, Khafid P (2012) Sea level change and vertical motion from satellite altimetry, Tide Gauges and GPS in the Indonesian region. Mar Geodesy 35(1):137–150

    Article  Google Scholar 

  • Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395

    Article  Google Scholar 

  • Fu L-L, Cazenave A (2001) Satellite altimetry and earth sciences: a handbook of techniques and applications. Academic Press, San Diego

    Google Scholar 

  • Georgiadou Y, Kleusberg A (1988) On carrier signal multipath effects in relative GPS positioning. Manuscripta geodaetica 13(3):172–179

    Google Scholar 

  • Gomis D, Tsimplis M, Marcos M, Fenoglio-Marc L, Pérez B, Raicich F, Vilibić I, Wöppelmann G, Monserrat S (2012) Mediterranean Sea-Level Variability and Trends. In: The Climate of the Mediterranean Region, Elsevier, pp 257–299

  • Hassan AA, Jin S (2014) Lake level change and total water discharge in East Africa Rift Valley from satellite-based observations. Glob Planet Chang 117:79–90

    Article  Google Scholar 

  • Janzen C, Mccammon M, Weingartner T, Statscewich H, Winsor P, Danielson S, Heim R (2019) Innovative Real-Time Observing Capabilities for Remote Coastal Regions. Front Marine Sci 6:176

    Article  Google Scholar 

  • Larson KM, Nievinski FG (2013) GPS snow sensing: results from the earthscope plate boundary observatory. GPS Solut 17(1):41–52

    Article  Google Scholar 

  • Larson KM, Ray RD, Nievinski FG, Freymueller JT (2013) The accidental tide gauge: A GPS reflection case study from Kachemak Bay, Alaska. IEEE Geosci Remote Sens Lett 10(5):1200–1204

    Article  Google Scholar 

  • Larson KM, Löfgren JS, Haas R (2013) Coastal sea level measurements using a single geodetic GPS receiver. Adv Space Res 51(8):1301–1310

    Article  Google Scholar 

  • Löfgren JS (2014) Haas R (2014) Sea level measurements using multi-frequency GPS and GLONASS observations. EURASIP J Adv Sig Process 1:50

    Article  Google Scholar 

  • Löfgren JS, Haas R, Scherneck H-G, Bos MS (2011) Three months of local sea level derived from reflected GNSS signals. Radio Science 46(6):RS0C5

    Article  Google Scholar 

  • Löfgren JS, Haas R, Scherneck H-G (2014) Sea level time series and ocean tide analysis from multipath signals at five GPS sites in different parts of the world. J Geodyn 80:66–80

    Article  Google Scholar 

  • Martin-Neira M (1993) A passive reflectometry and interferometry system (PARIS): application to ocean altimetry. ESA J 17:331–355

    Google Scholar 

  • Martin-Neira M, Caparrini M, Font-Rossello J, Lannelongue S, Vallmitjana CS (2001) The PARIS concept: an experimental demonstration of sea surface altimetry using GPS reflected signals. IEEE Trans Geosci Remote Sens 39(1):142–150

    Article  Google Scholar 

  • Miller A, Luscher A (2018) NOAA’s national water level observation network (NWLON). J Oper Oceanogr 12(2):S57–S66

    Google Scholar 

  • NOAA (2018) Costliest U.S. tropical cyclones tables update. https://www.nhc.noaa.gov/news/UpdatedCostliest.pdf.

  • NOAA (2020a) National Water Level Observation Network (NWLON). https://tidesandcurrents.noaa.gov/nwlon.html.

  • NOAA (2020b) Harmonic Constituents for 8768094, Calcasieu Pass LA. https://tidesandcurrents.noaa.gov/harcon.html?id=8768094.

  • Oldenborgh GJV, Wiel KVD, Sebastian A, Singh R, Arrighi J, Otto F, Haustein K, Li S, Vecchi G, Cullen H (2017) Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environ Res Lett 12(12):124009

    Article  Google Scholar 

  • Peng D, Hill EM, Li L, Switzer AD, Larson KM (2019) Application of GNSS interferometric reflectometry for detecting storm surges. GPS Solut 23(2):47. https://doi.org/10.1007/s10291-019-0838-y

    Article  Google Scholar 

  • Peppa I, Psimoulis P, Meng X (2019). Modelling antenna vibrations using the Signal-to-Noise Ratio (SNR) of GNSS signals. In: Proceeding of 4th joint international symposium on deformation monitoring (JISDM). Athens, Greece.

  • Roesler C, Larson KM (2018) Software tools for GNSS interferometric reflectometry (GNSS-IR). GPS Solut 22(3):80

    Article  Google Scholar 

  • Santamaría-Gómez A, Watson C, Gravelle M, King M, Wöppelmann G (2014) Levelling co-located GNSS and tide gauge stations using GNSS reflectometry. J Geodesy 89(3):241–258

    Article  Google Scholar 

  • Strandberg J, Hobiger T, Haas R (2016) Improving GNSS-R sea level determination through inverse modeling of SNR data. Radio Sci 51(8):1286–1296

    Article  Google Scholar 

  • Strandberg J, Hobiger T, Haas R (2019) Real-time sea-level monitoring using Kalman filtering of GNSS-R data. GPS Solut 23(3):61

    Article  Google Scholar 

  • Tourian MJ, Tarpanelli A, Elmi O, Qin T, Brocca L, Moramarco T, Sneeuw N (2016) Spatiotemporal densification of river water level time series by multimission satellite altimetry. Water Resour Res 52(2):1140–1159

    Article  Google Scholar 

  • Vu PL, Ha MC, Frappart F, Darrozes J, Ramillien G, Dufrechou G, Gegout P, Morichon D, Bonneton P (2019) Identifying 2010 Xynthia storm signature in GNSS-R-based tide records. Remote Sens 11(7):782. https://doi.org/10.3390/rs11070782

    Article  Google Scholar 

  • Williams SDP, Nievinski FG (2017) Tropospheric delays in ground based GNSS multipath reflectometry–experimental evidence from coastal sites. J Geophys Res Solid Earth 122(3):2310–2327. https://doi.org/10.1002/2016JB013612

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihye Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SK., Park, J. Monitoring a storm surge during Hurricane Harvey using multi-constellation GNSS-Reflectometry. GPS Solut 25, 63 (2021). https://doi.org/10.1007/s10291-021-01105-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-021-01105-2

Keywords

Navigation