Skip to main content
Log in

ADRC-based control strategies to alleviate SSR using STATCOM

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Increasing prominence of series compensation into the power system has evidently enhanced the rise of subsynchronous resonance (SSR). Alleviation of SSR with two novel control designs for static synchronous compensator (STATCOM) is proposed in this paper. Since it is quite challenging to optimize proportional and integral (PI) controllers in a nonlinear framework, hence a nonlinear active disturbance rejection controller (ADRC)-based strategies are proposed. First control design is template-based ADRC (TADRC), and the second control design is synchronous ADRC (SADRC). To validate the effectiveness of control schemes, an IEEE second benchmark model is used. Furthermore, different analyses are demonstrated to study the phenomenon of SSR. Firstly, the state space model-based design is provided for eigenvalue analysis. Fast Fourier transform (FFT) analysis is also carried out to show the dominant mode of oscillations along with the frequency scan at various levels of compensation. Finally, trends in generator speed and other parameters are shown in the time domain analysis of the system. The analyses and measures to alleviate the oscillations proposed in this paper are eminently cogent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(\varDelta \) :

Small deviation when used as prefix

\(\delta \) :

Load angle in rad/s

\(\varDelta \delta \) :

Angle of twist of mass

\(\varDelta \omega \) :

Deviation in speed of mass in pu

\(\omega \) :

Rotor speed in pu

\(\omega _0\) :

Speed (rated) in electrical rad/s

\(\varPsi \) :

Flux linkage in pu

\(\tau \) :

Torques in turbine sections

’.’:

Differential operator

bb:

Infinite bus when subscript

cd:

Capacitive and d-axis when subscript

cq:

Capacitive and q-axis when subscript

D:

Coefficient of damping in pu torque/pu speed deviation

d:

d-axis when subscript

ds:

Damper winding on q-axis when subscript

dw:

Damper winding on d-axis when subscript

e,E:

Voltage at sending end in pu

EXM:

Excitation when subscript

F\(\tau \) :

Torques in fractions

fd:

Field winding when subscript

GM:

Generator when subscript

GXM:

Excitation and generator when subscript

HLM:

High pressure and low pressure when subscript

HPM:

High pressure turbine when subscript

i:

Current in pu

K:

Stiffness in pu torque/electrical rad

\(\hbox {K}_{\mathrm{GVNR}}\) :

Governor system gain constant

L:

Transmission line when subscript.

LGM:

Low pressure turbine and generator when subscript

LPM:

Low pressure turbine when subscript

M:

Constant of inertia in MW.\(s^2\)/rad

md:

Mutual and d-axis when subscript

mq:

Mutual and q-axis when subscript

\(\hbox {O}_{\mathrm{GVNR}}\) :

Opening of governor

\(\hbox {O}_{\mathrm{SRP}}\) :

Speed relay position

q:

q-axis when subscript

qw:

Damper winding on q-axis when subscript

r,R:

Resistance in pu

rw:

Armature winding when subscript

Rx:

Regulation by excitation system when subscript

t0:

Terminal base value when subscript

\(\hbox {T}_{\mathrm{A}}\) :

Excitation due to regulation time constant

\(\hbox {T}_{\mathrm{CHP}}\) :

Chamber time constant in front of HP turbine

\(\hbox {T}_{\mathrm{ex}}\) :

Excitation time constant due to field

\(\hbox {T}_{\mathrm{GVNR}}\) :

Governor opening time constant

\(\hbox {T}_{\mathrm{HLM}}\) :

HP and LP turbine connection time constant

\(\hbox {T}_{\mathrm{RPG}}\) :

Speed relay position time constant in governor

td:

Terminal and d-axis when subscript

tq:

Terminal and q-axis when subscript

V:

Voltage in pu

x,X:

Reactance in pu

References

  1. Chatterjee S, Chatterjee S (2018) Review on the techno-commercial aspects of wind energy conversion system. IET Renew Power Gener 12(14):1581–1608

    Article  Google Scholar 

  2. Eriksen PB, Ackermann T, Abildgaard H, Smith P, Winter W, Rodriguez Garcia JM (2005) System operation with high wind penetration. IEEE Power Energy Mag 3(6):65–74

    Article  Google Scholar 

  3. Ackerman T (2005) Wind Power Power Syst. Wiley, New York

    Book  Google Scholar 

  4. Varma RK, Auddy S, Semsedini Y (2008) Mitigation of subsynchronous resonance in a series-compensated wind farm using facts controllers. IEEE Trans Power Deliv 23(3):1645–1654

    Article  Google Scholar 

  5. Fan L, Miao Z (2012) Mitigating ssr using dfig-based wind generation. IEEE Trans Sustain Energy 3(3):349–358

    Article  Google Scholar 

  6. Xie Hailian, Li Bin, Heyman Carl, de Oliveira Marcio M, Monge Mauro (2014) Subsynchronous resonance characteristics in presence of doubly-fed induction generator and series compensation and mitigation of subsynchronous resonance by proper control of series capacitor. IET Renew Power Gener 8(10):411–421

    Article  Google Scholar 

  7. Walker DN, Bowler CEJ, Jackson RL, Hodges DA (1975) Results of subsynchronous resonance test at mohave. IEEE Trans Power Appar Syst 94(5):1878–1889

    Article  Google Scholar 

  8. IEEE Ssr working group (1985) Terms, definitions and symbols for subsynchronous oscillations. IEEE Trans Power Appar Syst PAS 104(6):1326–1334

    Google Scholar 

  9. Hingorani NG, Gyugyi L (1999) Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems, 1st edn. Wiley, New York

    Book  Google Scholar 

  10. Yousuf V, Yadav N, Chopra N (Nov 2016) Mitigation of subsynchronous resonance using upfc with fuzzy logic control for power system stability. In: 2016 7th India International Conference on Power Electronics (IICPE), pp 1–6

  11. Yousuf V, Ahmad A (Oct 2018) A control strategy for statcom in alleviation of subsynchronous resonance in power systems. In: 2018 2nd IEEE International Conference on Power Electronics. Intelligent Control and Energy Systems (ICPEICES), pp 149–153

  12. Yousuf Viqar, Ahmad Aijaz (2020) Unit template based control design for alleviation and analysis of ssr in power system using statcom. Electr Power Compon Syst 47(19–20):1805–1813

    Google Scholar 

  13. Xie X, Zhang X, Liu H, Liu H, Li Y, Zhang C (2017) Characteristic analysis of subsynchronous resonance in practical wind farms connected to series-compensated transmissions. IEEE Trans Energy Convers 32(3):1117–1126

    Article  Google Scholar 

  14. Leon AE (2016) Integration of dfig-based wind farms into series-compensated transmission systems. IEEE Trans Sustain Energy 7(2):451–460

    Article  Google Scholar 

  15. Mokhtari Maghsoud, Khazaei Javad, Nazarpour Daryoosh (2013) Sub-synchronous resonance damping via doubly fed induction generator. Int J Electr Power Energy Syst 53:876–883

    Article  Google Scholar 

  16. Adrees A, Milanovic J (July 2016) Optimal compensation of transmission lines based on minimisation of the risk of subsynchronous resonance. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp 1–1

  17. Pillay Carpanen R, Rigby BS (2014) Analytical study of the impacts of an sssc and its power flow controller on torsional interaction. Electr Eng 96(2):157–174

    Article  Google Scholar 

  18. Liu Wei, Zongxiang Lu, Wang Xiongfei, Xie Xiaorong (2019) Frequency-coupled admittance modelling of grid-connected voltage source converters for the stability evaluation of subsynchronous interaction. IET Renew Power Gener 13(10):285–295

    Article  Google Scholar 

  19. Farmer RG (1985) Second benchmark model for computer simulation of subsynchronous resonance ieee subsynchronous resonance working group of the dynamic system performance subcommittee power system engineering committee. IEEE Power Eng Rev PER–5(5):34–34

    Article  Google Scholar 

  20. Shi L, Su J, Yao L (2017) Ss resonance analysis of complex power system incorporating wind power. IET Renew Power Gener 11(3):305–312

    Article  Google Scholar 

  21. Koteswara Raju D, Bhimrao Umre S, Junghare AS (2016) Improved control strategy for subsynchronous resonance mitigation with fractional-order pi controller. Int J Emerg Electr Power Syst 17(6):683–692

    Google Scholar 

  22. Farahani M (2012) Damping of subsynchronous oscillations in power system using static synchronous series compensator. IET Gener, Trans Distrib 6(6):539–544

    Article  MathSciNet  Google Scholar 

  23. Ghorbani A, Pourmohammad S (2011) A novel excitation controller to damp subsynchronous oscillations. Int J Electr Power Energy Syst 33(3):411–419

    Article  Google Scholar 

  24. Orman Maciej, Balcerek Przemysław, Orkisz Michał (2012) Effective method of subsynchronous resonance detection and its limitations. Int J Electr Power Energy Syst 43(1):915–920

    Article  Google Scholar 

  25. Janaki M, Prabhu Nagesh, Thirumalaivasan R, Kothari DP (2014) Mitigation of ssr by subsynchronous current injection with vsc hvdc. Int J Electr Power Energy Syst 57:287–297

    Article  Google Scholar 

  26. Khazaie Javad, Mokhtari Maghsood, Khalilyan Mansour, Nazarpour Daryoush (2012) Sub-synchronous resonance damping using distributed static series compensator (dssc) enhanced with fuzzy logic controller. Int J Electr Power Energy Syst 43(1):80–89

    Article  Google Scholar 

  27. Kundur P (1994) Power Syst Stab Control. McGraw-Hill, New York

    Google Scholar 

  28. Herbst Gernot (2013) A simulative study on active disturbance rejection control (adrc) as a control tool for practitioners. Electronics 2(3):246–279

    Article  MathSciNet  Google Scholar 

  29. Singh B, Chandra A, Al-Haddad K (2014) Power Quality: Problems Mitigation Techniques. Wiley, Hoboken

    Google Scholar 

  30. Singh B, Solanki J (2009) A comparison of control algorithms for dstatcom. IEEE Trans Ind Electr 56(7):2738–2745

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viqar Yousuf.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} {[}L]= & {} \omega \begin{bmatrix} -X_{dxx} &{} 0 &{} X_{mdx} &{} X_{mdx} &{} 0 &{} 0\\ 0 &{} -X_{qxx} &{} 0 &{} 0 &{} X_{mqx} &{} X_{mqx}\\ X_{mdx} &{} 0 &{} X_{fd} &{} X_{mdx} &{} 0 &{} 0\\ -X_{mdx} &{} 0 &{} X_{mdx} &{} X_{dpw} &{} 0 &{} 0\\ 0 &{} -X_{mqx} &{} 0 &{} 0 &{} X_{qpw} &{} X_{mqx}\\ 0 &{} -X_{mqx} &{} 0 &{} 0 &{} X_{mqx} &{} X_{ds}\\ \end{bmatrix} \end{aligned}$$
(a1)
$$\begin{aligned} {[}Q]= & {} \begin{bmatrix} r_a &{} -X_{qxx} &{} 0 &{} 0 &{} X_{mqx} &{} X_{mqx}\\ X_{dxx} &{} r_{arw} &{} -X_{mdx} &{} -X_{mdx} &{} 0 &{} 0\\ 0 &{} 0 &{} -r_{fd} &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} -r_{dpw} &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} -r_{qpw} &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -r_{ds} \\ \end{bmatrix} \end{aligned}$$
(a2)
$$\begin{aligned} {[}R]= & {} \begin{bmatrix} \psi _{qx0} &{} 0 &{} 1 &{} 0 \\ 0 &{} \psi _{dx0} &{} 0 &{} 1\\ \frac{r_{fd}}{X_{mdx}} &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ \end{bmatrix} \end{aligned}$$
(a3)

All the system design parameters are provided in [19], and parameters of STATCOM are :

Capacitance = 1F

DC Link Voltage = 20 KV

Transformer Voltage Ratio = 20/500 KV

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousuf, V., Ahmad, A. ADRC-based control strategies to alleviate SSR using STATCOM. Electr Eng 103, 2303–2314 (2021). https://doi.org/10.1007/s00202-021-01233-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-021-01233-5

Keywords

Navigation