Skip to main content
Log in

Comparison of the Results on Precipitation of High-Energy Electrons in the Stratosphere and on Satellites

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract—

Energetic electron precipitation (EEP) into the atmosphere is one of the mechanisms of depleting the Earth’s outer radiation belt. Precipitating electrons generate bremsstrahlung that penetrates the stratosphere and is recorded by detectors on balloons. However, these observations can be carried out only when the balloon is located at altitudes higher than ~20 km. The near-Earth POES satellites are constantly recording the fluxes of precipitating electrons in the loss cone, but they move too quickly in the space. In this paper, EEPs are compared on the basis of observations in the stratosphere and on satellites during 2003 and estimates of a number of EEP events at Apatity are obtained, assuming that the radiosonde was continuously located at an altitude higher than 26 km.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Stozhkov, Yu.I., Svirzhevsky, N.S., Bazilevskaya, G.A., Kvashnin, A.N., Makhmutov, V.S., and Svirzhevskaya, A.K., Long-term (50 years) measurements of cosmic ray fluxes in the atmosphere, Adv. Space Res., vol. 44, no. 10, pp. 1124–1137. https://doi.org/10.1016/j.asr.2008.10.038

  2. Millan, R.M. and Thorne, R.M., Review of radiation belt relativistic electron losses, J. Atmos. Sol.-Terr. Phys., 2007, vol. 69, no. 3, pp. 362–377. https://doi.org/10.1016/j.jastp.2006.06.019

    Article  ADS  Google Scholar 

  3. Shprits, Y.Y., Thorne, R.M., Friedel, R., et al., Outward radial diffusion driven by losses at magnetopause, J. Geophys. Res.: Space Phys., 2006, vol. 111, no. 11, A11214. https://doi.org/10.1029/2006JA011657

    Article  ADS  Google Scholar 

  4. Turner, D.L., Shprits, Y., Hartinger, M., and Angelopoulos, V., Explaining sudden losses of outer radiation belt electrons during geomagnetic storms, Nature Phys., 2012, vol. 8, no. 3, pp. 208–212. https://doi.org/10.1038/nphys2185

    Article  ADS  Google Scholar 

  5. Green, J.C., Likar, J., and Shprits, Y., Impact of space weather on the satellite industry, Space Weather, 2017, vol. 15, no. 6, pp. 804–818. https://doi.org/10.1002/2017SW001646

    Article  ADS  Google Scholar 

  6. Inan, U.S., Bell, T.F., Bortnik, J., and Albert, J.M., Controlled precipitation of radiation belt electrons, J. Geophys. Res., 2003, vol. 108, no. A5, p. 1186. https://doi.org/10.1029/2002JA009580

    Article  Google Scholar 

  7. Rodger, C.J., Clilverd, M.A., Ulich, Th., et al., The atmospheric implications of radiation belt remediation, Ann. Geophys., 2006, vol. 24, pp. 2025–2041.

    Article  ADS  Google Scholar 

  8. https://directory.eoportal.org/web/eoportal/satellite-missions/d/dsx#launch

  9. Jaynes, A.N., Baker, D.N., and Singer, H.J., et al., Source and seed populations for relativistic electrons: Their roles in radiation belt changes, J. Geophys. Res.: Space Phys., 2015, vol. 120, no. 9, pp. 7240–7254. https://doi.org/10.1002/2015JA021234

    Article  ADS  Google Scholar 

  10. Sinnhuber, M., Nieder, H., and Wieters, N., Energetic particle precipitation and the chemistry of the mesosphere/lower thermosphere, Surv. Geophys., 2012, vol. 33, pp. 1281–1334. https://doi.org/10.1007/s10712-012-9201-3

    Article  ADS  Google Scholar 

  11. Andersson, M.E., Verronen, P.T., Rodger, C.J., et al., Missing driver in the Sun–Earth connection from energetic electron precipitation impacts mesospheric ozone, Nature Commun., 2014, vol. 5, no. 10, 5197. https://doi.org/10.1038/ncomms6197

    Article  ADS  Google Scholar 

  12. Krivolutsky, A.A. and Repnev, A.I., Vozdeistvie kosmicheskikh faktorov na ozonosferu Zemli (Influence of Cosmic Factors on the Earth’s Ozonosphere), Moscow: GEOS, 2009.

  13. Krivolutsky, A.A. and Repnev, A.I., Impact of space energetic particles on the Earth’s atmosphere (a review), Geomagn Aeron. (Engl. Transl.), 2012, vol. 52, no. 6, pp. 685–716.

  14. Rozanov, E., Calisto, M., Egorova, T., Peter, T., and Schmutz, W., Influence of the precipitating energetic particles on atmospheric chemistry and climate, Surv. Geophys., 2012, vol. 33, pp. 483–501. https://doi.org/10.1007/s10712-012-9192-0

    Article  ADS  Google Scholar 

  15. Seppälä, A., Clilverd, M.A., Beharrell, M.J., et al., Substorm-induced energetic electron precipitation: Impact on atmospheric chemistry, Geophys. Res. Lett., 2015, no. 19, p. 8172–8176. https://doi.org/10.1002/2015GL065523

  16. Andersson, M.E., Verronen, P.T., Marsh, D.R., et al., Polar ozone response to energetic particle precipitation over decadal time scales: The role of medium-energy electrons, J. Geophys. Res.: Atmos., 2018, vol. 123, no. 1, pp. 607–622. https://doi.org/10.1002/2017JD027605

    Article  ADS  Google Scholar 

  17. Matthes, K., Funke, B., Andersson, M.E., et al., Solar forcing for CMIP6 (v3.2), Geosci. Model Dev., 2017, vol. 10, pp. 2247–2302. https://doi.org/10.5194/gmd-10-2247-2017

    Article  ADS  Google Scholar 

  18. Van de Kamp, M., Seppälä, A., Clilverd, M.A., et al., A model providing long-term data sets of energetic electron precipitation during geomagnetic storms, J. Geophys. Res.: Atmos., 2016, vol. 121, no. 20, pp. 12520–12540. https://doi.org/10.1002/2015JD024212

    Article  ADS  Google Scholar 

  19. Van de Kamp, M., Rodger, C.J., Seppälä, A., et al., An updated model providing long-term datasets of energetic electron precipitation, including zonal dependence, J. Geophys. Res.: Atmos., 2018, vol. 123, pp. 9891–9915. https://doi.org/10.1029/2017JD028253

    Article  Google Scholar 

  20. Mironova, I.A., Artamonov, A.A., Bazilevskaya, G.A., et al., Ionization of the polar atmosphere by energetic electron precipitation retrieved from balloon measurements, Geophys. Res. Lett., 2019, vol. 46, no. 2, pp. 990–996. https://doi.org/10.1029/2018GL079421

    Article  ADS  Google Scholar 

  21. Charakhch'yan, A.N., Investigation of stratosphere cosmic ray intensity fluctuations induced by processes on the Sun, Phys.-Usp., 1964, vol. 7, no. 3, pp. 358–374.

    ADS  Google Scholar 

  22. Makhmutov, V.S., Bazilevskaya, G.A., Stozhkov, Yu.I., et al., Catalogue of electron precipitation events as observed in the long-duration cosmic ray balloon experiment, J. Atmos. Sol.-Terr. Phys., 2016, vol. 149, pp. 258–276. https://doi.org/10.1016/j.jastp. 2015.12.006

  23. Bazilevskaya, G.A., Kalinin, M.S., Kvashnin, A.N., et al., Precipitation of energetic magnetospheric electrons and accompanying solar wind characteristics, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 2, pp. 147–155. https://doi.org/10.7868/S001679401702002X

  24. Bazilevskaya, G.A., Kalinin, M.S., Krainev, M.B., et al., Characteristics of the energetic electron precipitation and magnetospheric conditions in 1994, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 4, pp. 483–492. https://doi.org/10.1134/S0016794018040028

  25. Murphy, K.R., Watt, C.E.J., Mann, I.R., et al., The global statistical response of the outer radiation belt during geomagnetic storms, Geophys. Res. Lett., 2017, vol. 45, no. 9, pp. 3783–3792. https://doi.org/10.1002/2017GL076674

    Article  ADS  Google Scholar 

  26. Millan, R.M., McCarthy, M.P., Sample, J.G., et al., The balloon array for RBSP relativistic electron losses (BARREL), Space Sci. Rev., 2013, vol. 179, nos. 1–4, pp. 503–530. https://doi.org/10.1007/s11214-013-9971-z

    Article  ADS  Google Scholar 

  27. http://www.ngdc.noaa.gov/stp/satellite/poes

  28. Yahnin, A.G., Yahnina, T.A., Semenova, N.V., and Gvozdevsky, B.B., Relativistic electron precipitation as seen by NOOAA POES, in Proc. XXXVII Annual Seminar, Apatity, 2014, pp. 46–50.

  29. Yando, K., Millan, R.M., Green, J.C., and Evans, D.S., A Monte Carlo simulation of the NOAA POES medium energy proton and electron detector instrument, J. Geophys. Res., 2011, vol. 116, A10231. https://doi.org/10.1029/2011JA016671

    Article  ADS  Google Scholar 

  30. Millan, R.M., the BARREL team, Understanding relativistic electron losses with BARREL, J. Atmos. Sol.-Terr. Phys., 2011, vol. 73, pp. 1425–1434. https://doi.org/10.1016/j.jastp.2011.01.006

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank our colleagues from NOAA who provided the POES satellite data via the Internet. G. Bazilevskaya and V. Makhmutov are grateful for stimulating discussions within the framework of the ISSI & ISSI-BJ International Team project “Relativistic Electron Precipitation and Its Atmospheric Effect” under I.A. Mironova’s leadership.

Funding

This work was partially supported by the Russian Foundation for Basic Research and the German DFG Foundation, project no. 20-55-120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Bazilevskaya.

Additional information

Translated by Yu. Preobrazhensky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazilevskaya, G.A., Dyusembekova, A.S., Kalinin, M.S. et al. Comparison of the Results on Precipitation of High-Energy Electrons in the Stratosphere and on Satellites. Cosmic Res 59, 24–29 (2021). https://doi.org/10.1134/S0010952521010020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952521010020

Navigation