Skip to main content
Log in

A Promising Experiment with a Gamma Ray Spectrometer Onboard a Mobile Spacecraft to Study the Elemental Composition of the Moon, Mars, and Other Celestial Bodies without an Atmosphere or with a Thin Atmosphere

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

A new concept of a space experiment with a γ-ray spectrometer onboard a mobile spacecraft has been proposed for studying the elemental composition of the Moon, Mars, and other celestial bodies without an atmosphere or with a thin atmosphere using the method of tagged charged particles of galactic cosmic rays. This technique makes it possible to eliminate almost fully the background of γ-radiation from the spacecraft with the instrument installed onboard and significantly increase the spatial resolution for studying the elemental composition of matter along the mobile spacecraft trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Lawrence, D.J., Feldman, W.C., Barraclough, B.L., et al., Global elemental maps of the Moon: The Lunar Prospector Gamma-Ray Spectrometer, Science, 1998, vol. 281, pp. 1484–1489.

    Article  ADS  Google Scholar 

  2. Kobayashi, S., Hasebe, N., Shibamura, E., et al., Determining the absolute abundances of natural radioactive elements on the lunar surface by the Kaguya gamma-ray spectrometer, Space Sci. Rev., 2010, no. 154, pp. 193–218.

  3. Evans, L.G., Reedy, R.C., Starr, R.D., et al., Analysis of gamma ray spectra measured by Mars Odyssey, J. Geophys. Res.: Planets, 2006, vol. 111, no. E3, E03S04.

    Google Scholar 

  4. Evans, L.G., Peplowski, P.N., Rhodes, E.A., et al., Major-element abundances on the surface of Mercury: Results from the messenger gamma-ray spectrometer, J. Geophys. Res.: Space Phys., 2012, vol. 117, E00L07.

    Google Scholar 

  5. Surkov, I.A., Geochemical studies of Venus by Venera 9 and 10 automatic interplanetary stations, in Proceedings of the 8th Lunar Science Conference, Houston, Tex., 1977, vol. 3, pp. 2665–2689.

  6. Prettyman, T.H., Feldman, W.C., McSween, H.Y., et al., Dawn’s Gamma Ray and Neutron Detector, Space Sci. Rev., 2011, vol. 163, pp. 371–459.

    Article  ADS  Google Scholar 

  7. Mitrofanov, I.G., Litvak, M.L., Barmakov, Yu.I., et al., Experiment for measurements of Dynamic Albedo of Neutrons (DAN) onboard NASA’s Mars science laboratory, Space Sci. Rev., 2012, vol. 170, nos. 1–4, pp. 559–582.

    Article  ADS  Google Scholar 

  8. Litvak, M.L., Mitrofanov, I.G., Barmakov, Yu.N., et al., The Dynamic Albedo of Neutrons (DAN) experiment NASA’s 2009 Mars science laboratory, Astrobiology, 2008, vol. 8, no. 3, pp. 605–612.

    Article  ADS  Google Scholar 

  9. Golovin, D.V., Litvak, M., Kozyrev, S.A., et al., Neutron activation analysis on the surface of the Moon and other terrestrial planets, in 40th COSPAR Scientific Assembly, Moscow, 2014, Abstract B0.1-43-14.

  10. Mitrofanov, I.G., Litvak, M.L., Nikiforov, S.Y., et al., The ADRON-RM instrument onboard the ExoMars rover, Astrobiology, 2017, vol. 17, nos. 6–7, pp. 585–594.

    Article  ADS  Google Scholar 

  11. Quarati, F.G.A., Dorenbos, P., van der Biezen, J., et al., Scintillation and detection characteristics of high-sensitivity CeBr3 gamma-ray spectrometers, Nucl. Instrum. Methods Phys. Res. A, 2013, vol. 729, pp. 596–604.

    Article  ADS  Google Scholar 

  12. Kozyrev, A., Mitrofanov, I., Owens, A., et al., A comparative study of LaBr3(Ce3+) and CeBr3 based gamma-ray spectrometers for planetary remote sensing applications, Rev. Sci. Instrum., 2016, vol. 87, p. 085112.

    Article  ADS  Google Scholar 

  13. Boynton, W.V., Feldman, W.C., Mitrofanov, I.G., et al., The Mars Odyssey Gamma-Ray Spectrometer Instrument Suite, Space Sci. Rev., 2004, vol. 110, pp. 37–83.

    Article  ADS  Google Scholar 

  14. Goldsten, J.O., Rhodes, E.A., Boynton, W.V., et al., The MESSENGER gamma-ray and neutron spectrometer, Space Sci. Rev., 2007, vol. 131, pp. 339–391.

    Article  ADS  Google Scholar 

  15. Hasebe, N., Shibamura, E., Miyachi, T., et al., Gamma-ray spectrometer (GRS) for lunar polar orbiter SELENE, Earth Planets Space, 2008, vol. 60, pp. 299–312.

    Article  ADS  Google Scholar 

  16. Golovin, D.V., Litvak, M.L., Mitrofanov, I.G., et al., Comparison of sensitivities of semiconductor (HPGe) and scintillation (CeBr3) detectors in the measurement of gamma spectra induced by neutrons in the model of planetary soil, Phys. Part. Nuclei Lett., 2018, vol. 15, pp. 524–530.

    Article  ADS  Google Scholar 

  17. Litvak, M.L., Barmakov, Y.N., Belichenko, S.G., et al., Associated particle imaging instrumentation for future planetary surface missions, Nucl. Instrum. Methods Phys. Res. A, 2019, vol. 922, pp. 19–27.

    Article  ADS  Google Scholar 

  18. Mitrofanov, I.G., Sanin, A.B., Nikiforov, S.Y., et al., Cosmic gamma-ray spectrometer with tagged charged particles of Galactic Cosmic Rays, Nucl. Instrum. Methods Phys. Res. A, 2020, vol. 953, id 163148.

  19. McCinney, G.W., Lawrence, D.J., Prettyman, T.H., et al., MCNPX benchmark for cosmic ray interactions with the Moon, J. Geophys. Res.: Planets, 2006, vol. 111, E06004.

    ADS  Google Scholar 

  20. Lawrence, D.J., Feldman, W.C., Elphic, R.C., et al., Improved modeling of lunar prospector neutron spectrometer data: Implications for hydrogen deposits at the lunar poles, J. Geophys. Res., 2006, vol. 111, E08001.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Anikin.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anikin, A.A., Djachkova, M.V., Litvak, M.L. et al. A Promising Experiment with a Gamma Ray Spectrometer Onboard a Mobile Spacecraft to Study the Elemental Composition of the Moon, Mars, and Other Celestial Bodies without an Atmosphere or with a Thin Atmosphere. Cosmic Res 59, 30–35 (2021). https://doi.org/10.1134/S0010952521010019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952521010019

Navigation