Skip to main content
Log in

Pareto-Optimum Requirements for the Accuracy of the Reflective Surface of Parabolic Reflectors of Space Mirror Antennas for Perspective Frequencies

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

Increasing frequencies of perspective space mirror antennas functioning leads to a significant tightening of the requirements for the accuracy and stability of the reflecting surface of the used reflectors. However, the provision of high requirements is technically difficult to implement. Hence, the problem of Pareto-optimal design of parabolic antenna reflectors with a relatively high signal amplification coefficient and minimum requirements for the accuracy of the reflecting surface profile is formulated. We obtained analytical estimates for Pareto fronts of various ranks characterizing the accuracy of the profile of the reflecting surface of the antenna parabolic reflector depending on its diameter and the range of operating frequencies required to ensure a high signal gain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Imbriale, W.A., Spaceborn Antennas for Planetary Exploration, New York: Wiley-Interscience, 2006.

    Book  Google Scholar 

  2. Reznik, S.V., Prosuntsov, P.V., Mikhailovsky, K.V., and Shafikova, I.R., Material science problems of building space antennas with a transformable reflector 100 m in diameter, in 4th International Conference on Advanced Composites and Materials Technologies for Arduous Applications (ACMTAA) 5–6 November 2015, Wrexham, UK, IOP Conf. Ser.: Mat. Sci. Eng. 2015, vol. 153, pp. 1–10. https://doi.org/10.1088/1757-899X/153/1/012001

  3. Conception of the space transportation system, Roskosmos. http://www.roscosmos.ru/media/files/docs/3/ manned_mission_to_mars_ru_308_316.pdf

  4. Brunnenmeyer, D., Mills, S., Patel, S., et al., Ka and Ku operational considerations for military SATCOM applications, in Proceedings of the MILCOM 2012: The 2012 IEEE Military Communications Conference, Orlando, USA, 2015. https://doi.org/10.1109/MILCOM.2012.6415563

  5. Vechtomov, V.A., Zimin, V.N., Kuzenkov, A.N., et al., Onboard Ka-band multibeam antenna for zoned coverage of the territory of the Russian Federation by satellite communication with high-speed access, Nauka Innovatsii, 2012, no. 8, pp. 70–81. https://doi.org/10.18698/2308-6033-2012-8-319

  6. Butenko, V.V., Zheltonogov, I.V., and Kantor, L.Ya., new horizons of Ka-band satellite communication systems, Elektrosvyaz’, 2013, vol. 1, pp. 7–12.

    Google Scholar 

  7. Buitsinov, E. and Lokshin, B., Way for the Ka-band exploration by RSCC space instruments, Tekhnol. Sredstva Svyazi, 2014, vol. 101, no. 2, pp. 64–67.

    Google Scholar 

  8. Sultanov, A.S., Kornienko, V.I., and Panteleimonov, I.N., Assessment of the prospects for K/Ka-band usage in domestic satellite communication systems, Tekh. Nauki, 2014, vol. 23, no. 1, pp. 10–19.

    Google Scholar 

  9. Balanis, C.A., Antenna Theory and Design, New Jersey: Wiley-Interscience, 2005.

    Google Scholar 

  10. Stutzman, W.L. and Thiele, G.A., Antenna Theory and Design, New York: John Wiley and Sons, 2013.

    Google Scholar 

  11. Prigoda, B.A., Specific features of the construction of mirror antennas for spacecraft, Vestn. NPO im. S.A. Lavochkina, 2011, vol. 1, pp. 27–31.

    Google Scholar 

  12. Buffa, F., Causin, A., Cazzani, A., et al., The Sardinia radio telescope: a comparison between close-range photogrammetry and finite element models, Math. Mech. Solids, 2015, pp. 1–22. https://doi.org/10.1177/1081286515616227

  13. Belyanskii, P.V. and Mustafaev, M.I., Control over the form of correctors of the phase front of large radio telescopes, Avtom. Telemekh., 1985, vol. 46, no. 8, pp. 5–14.

    Google Scholar 

  14. Ruze, J., Antenna tolerance theory—a review, Proc. IEEE, 1966, vol. 54, no. 4, pp. 633–640. https://doi.org/10.1109/PROC.1966.4784

    Article  ADS  Google Scholar 

  15. Klimov, A.N., Tuning of large-size umbrella-type transformable reflectors in a dynamical coordinate system, Vestn. Sib. Gos. Aerokosm. Univ., 2013, vol. 52, no. 6, pp. 137–142.

    Google Scholar 

  16. Reznik, S.V., Prosuntsov, P.V., and Azarov, A.V., Modeling of the temperature and stressed-strained states of the reflector of a mirror space antenna, J. Eng. Phys. Thermophys., 2015, vol. 88, no. 4, pp. 978–983. https://doi.org/10.1007/s10891-015-1273-8

    Article  Google Scholar 

  17. Kislyakov, A.G., Radioastronomical investigations in the millimeter and submillimeter bands, Sov. Phys. Usp., 1971, vol. 13, no. 4, pp. 495–521. https://doi.org/10.3367/UFNr.0101.197008b.0607

    Article  ADS  Google Scholar 

  18. Lomaev, V.I. and Sagatelyan, G.R., Computer simulation of the operation of parabolic reflector finishing, Nauka Obraz.: MGTU im. N.E. Baumana, 2011, no. 10.

  19. Fedorchuk, S.D. and Arkhipov, M.Yu., On the assurance of the design accuracy of the space radio telescope RadioAstron, Cosmic Res., 2014, vol. 52, no. 5, pp. 379–381. https://doi.org/10.1134/S0010952514050049

    Article  ADS  Google Scholar 

  20. Filina, E.K., Golubev, E.S., Smirnov, A.V., et al., The effect of the variation in physical and mechanical cfrp properties on the primary mirror performance of the Millimetron space observatory, Mekh. Kompoz. Mater. Konstr., 2019, vol. 25, no. 4, pp. 509–521. https://doi.org/10.33113/mkmk.ras.2019.25.04.509_521.04

    Article  Google Scholar 

  21. Hedgepeth, J.M., Accuracy potentials for large space antenna reflectors with passive structure, J. Spacecr. Rockets, 1982, vol. 19, no. 3, pp. 211–217. https://doi.org/10.2514/3.62239

    Article  ADS  Google Scholar 

  22. Sychev, V.V., Method of manufacturing lightweight optical elements, Nauka Obraz.: MGTU im. N.E. Baumana, 2012, no. 4.

  23. Abdulkadyrov, M.A. and Semenov, A.P., Modern methods of manufacturing astronomical and space mirrors, Fotonika, 2015, vol. 3, no. 51, pp. 62–79.

    Google Scholar 

  24. Dukhopodel’nikov, D.V., Ivakhnenko, S.G., Vorob’ev, E.V., and Azerbaev, A.A., Influence of the ion treatment mode on the defect density and destruction of the Astrositall surface, Obraz.: MGTU im. N.E. Baumana, 2014, vol. 12, pp. 181–191. https://doi.org/10.7463/1214.0748236

    Article  Google Scholar 

  25. Kupriyanova, O.A., Vlasov, A.Yu., Pasechnik, K.A., and Arzamaskina, A.M., A complex indicator for assessing the reflector quality level, Vestn. Sib. Gos. Aerokosm. Univ., 2015, vol. 16, no. 4, pp. 946–951.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Muranov.

Additional information

Translated by E. Seifina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muranov, A.N. Pareto-Optimum Requirements for the Accuracy of the Reflective Surface of Parabolic Reflectors of Space Mirror Antennas for Perspective Frequencies. Cosmic Res 59, 46–52 (2021). https://doi.org/10.1134/S001095252101007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001095252101007X

Navigation