Skip to main content
Log in

On the Thermodynamics of Solubilization

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The thermodynamic theory of solubilization has been formulated with introducing the notion of standard solubilization affinity. An important component of this notion is the Laplace capillary pressure represented in the phase interpretation of the hydrocarbon core of a normal micelle. The partition coefficient of a solubilisate is also interpreted both in terms of a mole fraction within the formalism of chemical thermodynamics and in terms of concentration within the formalism of statistical mechanics. In contrast to the widespread approach using fictitious micellar “pseudophase,” this interpretation is based on the real physical picture of solubilisate partition between micelles and an ambient solution. Moreover, an exact solution has been presented for the problem of the effect of solubilization on the value of the critical micelle concentration (CMC). The consideration is based on the mass action law and new methods of defining the CMC via the constant of this law, aggregation number, and solubilisate concentration. The cases of solubilization from saturated (when studying solubility) and unsaturated (with an arbitrary concentration) solutions have been analyzed. However, the same result has been obtained in all variants, namely, solubilization decreases the CMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Rusanov, A.I., Mitselloobrazovanie v rastvorakh poverkhnostno-aktivnykh veshchestv (Micellization in Surfactant Solutions), St. Petersburg: Khimiya, 1992.

  2. Rusanov, A.I., Micellization in Surfactant Solutions. Chem. Rev., Vol’pin, M.E., Ed., vol. 22, Part 1, Reading: Harwood Academic, 1996. ISBN 90-5702-297-4.

  3. Rusanov, A.I. and Shchekin, A.K., Mitselloobrazovanie v rastvorakh poverkhnostno-aktivnykh veshchestv, 2-e izd., dop (Micellization in Surfactant Solutions, 2nd ed., appl.), St. Petersburg: Lan’, 2016.

  4. Handbook of Surface and Colloid Chemistry, Birdi, R.S., Ed., New York: Taylor & Francis, 2009, p. 379.

    Google Scholar 

  5. Shinoda, K. and Hutchinson, E., J. Phys. Chem., 1962, vol. 66, p. 577.

    Article  CAS  Google Scholar 

  6. Kuni, F.M. and Rusanov, A.I., Teor. Mat. Fiz., 1970, vol. 2, p. 265.

    Article  CAS  Google Scholar 

  7. Ekwall, P. and Stenius, P., in Surface Chemistry and Colloids. Phys. Chem. Ser. Two, Kerker, M., Ed., London: Butterworths, 1975, vol. 7, p. 215.

    Google Scholar 

  8. Rusanov, A.I., Langmuir, 2014, vol. 30, p. 14443.

    Article  CAS  Google Scholar 

  9. Rusanov, A.I., Colloid J., 2016, vol. 78, p. 371.

    Article  CAS  Google Scholar 

  10. Rusanov, A.I., Colloid J., 2016, vol. 78, p. 669.

    Article  CAS  Google Scholar 

  11. Hayase, K. and Hayano, S., Bull. Chem. Soc. Jpn., 1977, vol. 50, p. 83.

    Article  CAS  Google Scholar 

  12. Edwards, D.A., Luthy, R.G., and Liu, Z., Environ. Sci. Technol., 1991, vol. 25, p. 127.

    Article  CAS  Google Scholar 

  13. Zadymova, N.M. and Ivanova, N.I., Colloid J., 2013, vol. 75, p. 159.

    Article  CAS  Google Scholar 

  14. Naumova, K.A., Dement’eva, O.V., Zaitseva, A.V., and Rudoy, V.M., Colloid J., 2019, vol. 81, p. 416.

    Article  CAS  Google Scholar 

  15. Shirahama, K. and Kashiwabara, T., J. Colloid Interface Sci., 1971, vol. 36, p. 65.

    Article  CAS  Google Scholar 

  16. Rusanov, A.I., Colloid J., 2019, vol. 81, p. 741.

    Article  CAS  Google Scholar 

  17. Rusanov, A.I., Colloid J., 2020, vol. 82, p. 54.

    Article  CAS  Google Scholar 

  18. Rusanov, A.I., Colloid J., 2020, vol. 82, p. 62.

    Article  CAS  Google Scholar 

  19. Van der Waals, I.D. and Constamm, F., Lehrbuch der Thermostatik, Leipzig: Johann Ambrosius Barth, 1927.

    Google Scholar 

  20. Storonkin, A.V., Termodinamika geterogennykh system, T. 1, 2 (Thermodynamics of Heterogeneous Systems, Vols. 1, 2), Leningrad: Leningr. Univ., 1967, 1969.

  21. Kuni, F.M., Statisticheskaya fizika i termodinamika (Statistical Physics and Thermodynamics), Moscow: Nauka, 1981.

  22. Eicke, H.-F., Micelles. Top. Curr. Chem., Berlin: Springer, 1980, vol. 87, p. 85.

    Google Scholar 

  23. Lindman, B. and Wennerstrom, H., Micelles. Top. Curr. Chem., Berlin: Springer, 1980, vol. 87, p. 1.

    Google Scholar 

  24. Eicke, H.-F. and Christen, H., Helv. Chim. Acta, 1978, vol. 61, p. 2258.

    Article  CAS  Google Scholar 

  25. Rusanov, A.I., Colloid J., 2016, vol. 78, p. 371.

    Article  CAS  Google Scholar 

  26. Rusanov, A.I., Colloid J., 2016, vol. 78, p. 669.

    Article  CAS  Google Scholar 

  27. Rusanov, A.I., Colloid J., 2020, vol. 82, p. 414.

    Article  CAS  Google Scholar 

  28. Rusanov, A.I., Colloid J., 2020, vol. 82, p. 560.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-03-00641.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Rusanov.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusanov, A.I. On the Thermodynamics of Solubilization. Colloid J 83, 127–134 (2021). https://doi.org/10.1134/S1061933X20060113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X20060113

Navigation