Skip to main content
Log in

Rearrangements in the Conformational Structure of Polypeptides on the Surface of a Metal Nanowire in Rotating Electric Field: Molecular Dynamics Simulation

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Molecular dynamics has been employed to study conformational rearrangements of polyampholytic and uniformly charged polypeptides adsorbed on the surface of a transversely polarized nanowire, in particular, upon rotation of the polarizing electric field vector. On the surface of the transversely polarized nanowire, a fringe consisting of polyampholitic polypeptide macromolecules is protruded in the direction of polarization, while uniformly charged polypeptide is shifted to the polarized regions of the cross section that are charged oppositely to the charge of macrochain units. The larger the distance between oppositely charged units in the polyampholytic polypeptide, the higher the ratio between the fringe thicknesses in the direction of polarization and in the orthogonal direction in the cross section plane. In an electric field rotating around the axis of the metal nanowire, uniformly charged polypeptides adsorbed on its surface rotate around the wire in the same direction. The same phenomenon has been observed for polyampholytic polypeptides, in which the distances between negatively and positively charged units in macrochains are longer than the half-circumference of the nanowire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Chen, Y., Cruz-Chu, E.R., Woodard, J., Gartia, M.R., Schulten, K., and Liu, L., ACS Nano, 2012, vol. 6, p. 8847.

    Article  CAS  Google Scholar 

  2. Lhenry, S., Leroux, Y.R., Orain, C., Conan, F., Cosquer, N., Le Poul, N., Reinaud, O., Le Mest, Y., and Hapiot, P., Langmuir, 2014, vol. 30, p. 4501.

    Article  CAS  Google Scholar 

  3. Ho, Y., Shendruk, T.N., Slater, G.W., and Hsiao, P., Langmuir, 2013, vol. 29, p. 2359.

    Article  CAS  Google Scholar 

  4. Li, D., Ma, Y., Duan, H., Deng, W., and Li, D., Biosens. Bioelectron., 2018, vol. 99, p. 389.

    Article  CAS  Google Scholar 

  5. Feng, J., Xu, L., Cui, G., Wu, X., Ma, W., Kuang, H., and Xu, C., Biosens. Bioelectron., 2016, vol. 81, p. 138.

    Article  CAS  Google Scholar 

  6. Zhao, X., Dong, J., Cao, E., Han, Q., Gao, W., Wang, Y., Qi, J., and Sun, M., Appl. Mater. Today, 2019, vol. 14, p. 166.

    Article  Google Scholar 

  7. Yilmaz, M., Senlik, E., Biskin, E., Yavuz, M.S., Tamer, U., and Demirel, G., Phys. Chem. Chem. Phys., 2014, vol. 16, p. 5563.

    Article  CAS  Google Scholar 

  8. Kruchinin, N.Yu. and Kucherenko, M.G., Colloid J., 2019, vol. 81, p. 110.

    Article  CAS  Google Scholar 

  9. Kruchinin, N.Yu. and Kucherenko, M.G., Colloid J., 2020, vol. 82, p. 136.

    Article  CAS  Google Scholar 

  10. Kruchinin, N.Yu. and Kucherenko, M.G., Biophysics, 2020, vol. 65, p. 186.

    Article  CAS  Google Scholar 

  11. Kruchinin, N.Yu. and Kucherenko, M.G., Colloid J., 2020, vol. 82, p. 392.

    Article  CAS  Google Scholar 

  12. Kruchinin, N.Yu. and Kucherenko, M.G., Russ. J. Phys. Chem. A, 2020, vol. 94, p. 1433.

    Article  CAS  Google Scholar 

  13. Ostler, D., Kannam, S.K., Daivis, P.J., Frascoli, F., and Todd, B.D., J. Phys. Chem. C, 2017, vol. 121, p. 28158.

    Article  CAS  Google Scholar 

  14. Ostler, D., Kannam, S.K., Frascoli, F., Daivis, P.J., and Todd, B.D., Langmuir, 2019, vol. 35, p. 14742.

    Article  CAS  Google Scholar 

  15. Fu, Z., Liang, D., Jiang, S., Zhao, P., Han, K., and Xu, Z., J. Phys. Chem. C, 2019, vol. 123, p. 30649.

    Article  CAS  Google Scholar 

  16. Kucherenko, M.G., Rusinov, A.P., Chmereva, T.M., Ignat’ev, A.A., Kislov, D.A., and Kruchinin, N.Yu., Opt. Spectrosc., 2009, vol. 107, no. 3, p. 480.

    Article  CAS  Google Scholar 

  17. Kucherenko, M.G., Izmodenova, S.V., Kruchinin, N.Yu., and Chmereva, T.M., High Energy Chem., 2009, vol. 43, p. 592.

    Article  CAS  Google Scholar 

  18. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., and Schulten, K., J. Comput. Chem., 2005, vol. 26, p. 1781.

    Article  CAS  Google Scholar 

  19. Bashford, D., Bellott, M., Dunbrack, Jr., R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-Mccarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher III, W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., and Karplus, M., J. Phys. Chem. B, 1998, vol. 102, p. 3586.

    Article  Google Scholar 

  20. Heinz, H., Vaia, R.A., Farmer, B.L., and Naik, R.R., J. Phys. Chem. C, 2008, vol. 112, p. 17 281.

    Article  Google Scholar 

  21. Darden, T., York, D., and Pedersen, L., J. Chem. Phys., 1993, vol. 98, p. 10 089.

    Article  Google Scholar 

  22. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., and Klein, M.L., J. Chem. Phys., 1983, vol. 79, p. 926.

    Article  CAS  Google Scholar 

  23. Humphrey, W., Dalke, A., and Schulten, K., J. Mol. Graph., 1996, vol. 14, p. 33.

    Article  CAS  Google Scholar 

  24. Kruchinin, N.Yu. and Kucherenko, M.G., Khim. Fiz. Mezoskop., 2016, vol. 13, no. 2, p. 225.

    Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of scientific project no. FSGU-2020-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Kruchinin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruchinin, N.Y., Kucherenko, M.G. Rearrangements in the Conformational Structure of Polypeptides on the Surface of a Metal Nanowire in Rotating Electric Field: Molecular Dynamics Simulation. Colloid J 83, 79–87 (2021). https://doi.org/10.1134/S1061933X20060083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X20060083

Navigation