Skip to main content
Log in

Nonlinear Magnetic Response of a Viscoelastic Ferrocolloid: Effective Field Approximation

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

A viscoelastic ferrocolloid has been probed with the use of a weak alternating magnetic field, which causes rotational oscillations of nanoparticles. The rheology of the dispersion medium has been described using Jeffry’s phenomenological scheme, according to which, colloidal particles are assumed to be magnetically rigid. The Langevin equations that describe the Brownian rotational motion have been used to derive a set of equations for the dynamic magnetization and orientation kinetics of a colloidal ensemble. The solution of the problem has been obtained by the effective field method. The linear and cubic dynamic magnetic susceptibilities, as well as the orientational response of the system, have been found. It has been shown that, in the spectra of the responses of all orders, from linear to cubic ones, the effects of mechanical retardation (stress relaxation) lead to the appearance of specific features, namely, an increase in the medium elasticity is accompanied by variations in the position and height of the main maximum. Expressions have been proposed to relate the rheological parameters of the used Jeffry’s model with the structural characteristics of a polymer solution, i.e., the number of monomers in a macromolecule, the blob size, and the concentration of the physical network nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Wilhelm, C., Browaeys, J., Ponton, A., and Bacri, J.-C., Phys. Rev. E, 2003, vol. 67, 011504.

    Article  CAS  Google Scholar 

  2. Chevry, L., Sampathkumar, N.K., Cebers, A., and Berret, J.-F., Phys. Rev. E, 2013, vol. 88, 062306.

    Article  CAS  Google Scholar 

  3. Reoben, E., Roeder, L., Teusch, S., Effertz, M., Dieters, U.K., and Schmidt, A.M., Colloid Polym. Sci., 2014, vol. 292, p. 2013.

    Article  Google Scholar 

  4. Hess, M., Roeben, E., Rochels, P., Zylla, M., Webers, S., Wende, H., and Schmidt, A.M., Phys. Chem. Chem. Phys., 2019, vol. 21, p. 26525.

    Article  CAS  Google Scholar 

  5. Nikitin, P.I., Vetoshko, P.M., and Ksenevich, T.I., J. Magn. Magn. Mater., 2007, vol. 311, p. 455.

    Article  Google Scholar 

  6. Nikitin, M.P., Torno, M., Chen, H., and Rosengart, A., J. Appl. Phys., 2008, vol. 103, 07A304.

  7. Nikitin, M.P., Orlov, A.V., Sokolov, I.L., Minakov, A.A., Nikitin, P.I., Ding, J., Bader, S.D., Rozhkova, E.A., and Novosad, V., Nanoscale, 2018, vol. 10, p. 11642.

    Article  CAS  Google Scholar 

  8. Gleich, B. and Weizenecker, J., Nature, 2005, vol. 435, p. 1214.

    Article  CAS  Google Scholar 

  9. Weizenecker, J., Gleich, B., Rahmer, J., Dahnke, H., and Borgert, J., Phys. Med. Biol., 2009, vol. 54, p. L1.

    Article  CAS  Google Scholar 

  10. Panagiotopoulos, N., Duschka, R., Ahlborg, M., Dringout, G., Debbeler, C., Graeser, M., Keathner, C., Lüdtke-Buzug, K., Medimagh, H., Steizner, J., Buzug, T., Barkhausen, J., Vogt, F.M., and Haegele, J., Int. J. Nanomed., 2015, vol. 10, p. 3097.

    Article  CAS  Google Scholar 

  11. Dumas, J. and Bacri, J.-C., J. Phys. Lett. (Paris), 1980, vol. 41, p. 279.

    Article  CAS  Google Scholar 

  12. Bacri, J.-C., Dumas, J., Gorse, D., Perzynski, R., and Salin, D., J. Phys. Lett. (Paris), 1985, vol. 46, p. 1199.

    Article  Google Scholar 

  13. Wilhelm, C., Gazeau, F., Roger, J., Pons, J.N., Salis, M.F., Perzynski, R., and Bacri, J.-C., Phys. Rev. E, 2002, vol. 65, 031404.

    Article  CAS  Google Scholar 

  14. Malkin, A.Ya. and Isayev, A.I., Rheology: Concepts, Methods, Applications, Toronto: ChemTech Publ., 2005.

    Google Scholar 

  15. Oswald, P., Rheophysics: The Deformation and Flow of Matter, Cambridge: Cambridge Univ. Press, 2009.

    Google Scholar 

  16. Raikher, Yu.L. and Rusakov, V.V., J. Exp. Theor. Phys., 2010, vol. 111, p. 883.

    Article  CAS  Google Scholar 

  17. Rusakov, V.V., Raikher, Yu.L., and Perzynski, R., Math. Model. Nat. Phenom., 2015, vol. 10, no. 4, p. 1.

    Article  Google Scholar 

  18. Rusakov, V.V., Raikher, Yu.L., and Perzynski, R., Soft Matter, 2013, vol. 9, p. 10857.

    Article  Google Scholar 

  19. Gardel, M.L., Valentine, M.T., and Weitz, D.A., Microscale Diagnostic Techniques, Breuer, K., Ed., Heidelberg: Springer-Verlag, 2005, p. 1.

    Google Scholar 

  20. Raikher, Yu.L., Rusakov, V.V., Coffey, W.T., and Kalmykov, Yu.P., Phys. Rev. E, 2001, vol. 63, 031402.

    Article  CAS  Google Scholar 

  21. Coffey, W.T. and Kalmykov, Yu.P., The Langevin Equation, Singapore: World Scientific, 2012, 3rd ed.

    Book  Google Scholar 

  22. Born, M. and Wolf, E., Principles of Optics, Pergamon, 1959.

    Google Scholar 

  23. Rusakov, V.V. and Raikher, Yu.L., Colloid J., 2017, vol. 79, p. 264.

    Article  CAS  Google Scholar 

  24. Rusakov, V.V. and Raikher, Yu.L., Colloid J., 2020, vol. 82, p. 161.

    Article  CAS  Google Scholar 

  25. Raikher, Yu.L. and Shliomis, M.I., Relaxation Phenomena in Condensed Matter, Coffey, W., Ed., New York: Wiley, 1994, vol. 87, p. 595.

    Google Scholar 

  26. Raikher, Yu.L. and Stepanov, V.I., Adv. Chem. Phys., 2004, vol. 129, p. 419.

    CAS  Google Scholar 

  27. Klimontovich, Yu.L., Statisticheskaya teoriya otkrytykh sistem (Statistical Theory of Open Systems), Moscow: Yanus-K, 1999.

  28. Grosberg, A.Yu. and Khokhlov, A.R., Polimery i biopolimery s tochki zreniya fiziki (Polymers and Biopolymers from the Point of View of Physics), Dolgoprudnyi: Izd. Dom Intellekt, 2010.

  29. Bohórquez, A.C., Yang, C., Bejleri, D., and Rinaldi, C., J. Colloid Interface Sci., 2017, vol. 506, p. 393.

    Article  Google Scholar 

Download references

Funding

This work was performed within the framework of project no. АААА-А20-120020690030-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Rusakov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusakov, V.V., Raikher, Y.L. Nonlinear Magnetic Response of a Viscoelastic Ferrocolloid: Effective Field Approximation. Colloid J 83, 116–126 (2021). https://doi.org/10.1134/S1061933X21010117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X21010117

Navigation