Skip to main content
Log in

When one stock share is a biological individual: a stylized simulation of the population dynamics in an order-driven market

  • Published:
Decisions in Economics and Finance Aims and scope Submit manuscript

Abstract

The demand–supply relationship plays an important role in an order-driven stock market. In this paper, we propose a stylized model by defining demand (supply) over a stock at a certain time as how many shares are on the bid (ask) side, which includes all buy (sell) limit orders and buy (sell) market orders. Also, we will treat the two types of shares as two different species with interaction (a single share corresponds to an individual of one species) and will construct and apply generalized Lotka–Volterra equations (Hofbauer and Sigmund in Evolutionary games and population dynamics, Cambridge University Press, Cambridge, 1998) to simulate how their population evolve based on some properties or assumptions of an order-driven market, and also on the heterogenous beliefs among traders. The model suggests that the population of bid and ask shares moves either to a fixed point or periodically without the impact of external information. Also, our model gives a reason, though it is not perfect, explaining why stock prices can behave chaotically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. We do not consider the impact of stop orders in this paper.

  2. The variable x is related to the stock price with a simple relationship. But the derivation of m is relatively complicated, so we do not go in details.

  3. In the real market, if two shares are at a same price, then we have a choice of methods to determine which share should be executed. There are several means of doing this, such as according to the time of placing orders, or the size of the order and the grade of the investors. Then we array them from the bottom to the top based on the order of executing at that price level.

  4. To avoid the possible confusion, we use capital and italic X and Y to denote the populations of bid and ask shares specifically, but apply lowercases of x and y for more general cases, such as for the introduction of Lotka–Volterra equations. Also, we assume X and Y are observable to all investors.

  5. This assumption is based on the property of demand curves and supply curves.

  6. Imagine that there is a particle, which moves along the trajectory of the solution with a certain initial point.

  7. The system meets the Lipschitz condition (a proof is in the appendix), so the solution is unique.

  8. For this case, we need to imagine that the particle is carried by the signal information from one circle to another constantly.

References

  • Agliari, A., Naimzada, A., Pecora, N.: Boom-bust dynamics in a stock market participation model with heterogeneous traders. J. Econ. Dyn. Control 91, 458–468 (2018)

    Article  Google Scholar 

  • Andersen, T.G., Bollerslev, T.: Intraday periodicity and volatility persistence in financial markets. J. Empir. Finance 4(2–3), 115–158 (1997)

    Article  Google Scholar 

  • Bak, P., Paczuski, M., Shubik, M.: Price variations in a stock market with many agents. Phys. A 246(3–4), 430–453 (1997)

    Article  Google Scholar 

  • Brock, W.A., Hommes, C.H.: A rational route to randomness. Econom. J. Econom. Soc. 65, 1059–1095 (1997)

    Google Scholar 

  • Brock, W.A., Hommes, C.H.: Heterogeneous beliefs and routes to chaos in a simple asset pricing model. J. Econ. Dyn. Control 22(8–9), 1235–1274 (1998)

    Article  Google Scholar 

  • Cavalli, F., Naimzada, A., Pireddu, M.: An evolutive financial market model with animal spirits: imitation and endogenous beliefs. J. Evol. Econ. 27(5), 1007–1040 (2017)

    Article  Google Scholar 

  • Chiarella, C., He, X.-Z.: Heterogeneous beliefs, risk and learning in a simple asset pricing model. Comput. Econ. 19(1), 95–132 (2002)

    Article  Google Scholar 

  • Chiarella, C., Dieci, R., He, X.-Z.: Heterogeneous expectations and speculative behavior in a dynamic multi-asset framework. J. Econ. Behav. Organ. 62(3), 408–427 (2007)

    Article  Google Scholar 

  • Cont, R., De Larrard, A.: Price dynamics in a Markovian limit order market. SIAM J. Financ. Math. 4(1), 1–25 (2013)

    Article  Google Scholar 

  • Cont, R., Stoikov, S., Talreja, R.: A stochastic model for order book dynamics. Oper. Res. 58(3), 549–563 (2010)

    Article  Google Scholar 

  • Daniels, M.G., Farmer, J.D., Gillemot, L., Iori, G., Smith, E.: Quantitative model of price diffusion and market friction based on trading as a mechanistic random process. Phys. Rev. Lett. 90(10), 108102 (2003)

    Article  Google Scholar 

  • De Grauwe, P., Kaltwasser, P.R.: Animal spirits in the foreign exchange market. J. Econ. Dyn. Control 36(8), 1176–1192 (2012)

    Article  Google Scholar 

  • Frost, A.J., Prechter, R.R.: Elliott Wave Principle: Key to Market Behavior. Elliott Wave International, Gainesville (2005)

    Google Scholar 

  • Hirsch, M.W., Smale, S., Devaney, R.L.: Differential Equations, Dynamical Systems, and an Introduction to Chaos. Academic press, New Yrok (2012)

    Google Scholar 

  • Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  • Huang, H., Kercheval, A.N.: A generalized birth–death stochastic model for high-frequency order book dynamics. Quantitative Finance 12(4), 547–557 (2012)

    Article  Google Scholar 

  • Khalil, H.K.: Noninear Systems, vol. 2(5), p. 5-1. Prentice-Hall, New Jersey (1996)

    Google Scholar 

  • Kirman, A.: Ants, rationality, and recruitment. Q. J. Econ. 108(1), 137–156 (1993)

    Article  Google Scholar 

  • Levy, M., Levy, H., Solomon, S.: Microscopic simulation of the stock market: the effect of microscopic diversity. J. Phys. I 5(8), 1087–1107 (1995)

    Google Scholar 

  • Lotka, A.J.: Elements of physical biology. Sci Prog Twent Century (1919–1933) 21(82), 341–343 (1926)

    Google Scholar 

  • Mandelbrot, B.: The variation of certain speculative prices. J. Bus. 36(4), 394–419 (1963)

    Article  Google Scholar 

  • O’sullivan, A., Sheffrin, S.M.: Economics: Principles in Action, 3rd edn. Pearson Prentice Hall, Boston, MA (2007)

  • Odum, H.T.: Environment, Power and Society. Wiley, New York (1971)

    Google Scholar 

  • Perko, L.: Differential Equations and Dynamical Systems, vol. 7. Springer, Berlin (2013)

    Google Scholar 

  • Ramsey, J.B., Zhang, Z.: The application of wave form dictionaries to stock market index data. In: Kravtsov, Y.A., Kadtke, J.B. (eds.) Predictability of Complex Dynamical Systems, pp. 189–205. Springer, Berlin (1996)

    Chapter  Google Scholar 

  • Saaty, T.L.: Modern Nonlinear Equations. Courier Corporation, North Chelmsford (2012)

    Google Scholar 

  • Samuelson, P.A.: Economics—An Introductory Analysis. Mcgraw-Hill Book Company Inc., New York (1951)

    Google Scholar 

  • Simin, P.T., Jafari, G.R., Ausloos, M., Caiafa, C.F., Caram, F., Sonubi, A., et al.: Dynamical phase diagrams of a love capacity constrained prey–predator model. Eur. Phys. J. B 91(2), 43 (2018)

    Article  Google Scholar 

  • Solomon, S., Richmond, P.: Power laws of wealth, market order volumes and market returns. Phys. A 299(1–2), 188–197 (2001)

    Article  Google Scholar 

  • Verhulst, P.: La loi d’accroissement de la population. Nouv. Mem. Acad. R. Soc. Belle-Lett. Brux. 18(1) (1845)

  • Volterra, V.: Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. C. Ferrari, Venezia (1927)

    Google Scholar 

  • Zill, D.G., Wright, W.S.: Differential Equations with Boundary-Value Problems. Cengage Learning, Boston (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanchao Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 The proof of periodical solution

As there are two critical points on the boarder of the target area, Poincare–Bendixson theorem is failed here. This proof is almost the same as the proof of periodical solution for prey–predator model. We largely refer to the method in book of Hirsch et al. (2012). Therefore, the proof below is very similar to the proof that every solution of the prey–predator system is a closed orbit. All information needed to understand the proof below can be found there (page 242, Hirsch et al. 2012).

We let

$$ L_{{t_{n} }}^{{\left( {X_{0} ,Y_{o} } \right)}} \left( {X,Y} \right) = r\ln Y - r\ln \left( {K - Y} \right) - \sigma Y - \left[ {r\ln X - r\ln \left( {K - X} \right) - \sigma X} \right]. $$

The solution with the initial point \( \left( {X_{0} ,Y_{0} } \right) \) is different than \( \left( {L_{2} ,L_{1} } \right) \). There are two properties about \( L_{{t_{n} }}^{{\left( {X_{0} ,Y_{o} } \right)}} \left( {X,Y} \right) \): (1) Trajectory of this solution is not a limit circle, as \( L_{{t_{n} }}^{{\left( {X_{0} ,Y_{o} } \right)}} \left( {X,Y} \right) \) is not constant on any open set. (2) It is easy to check \( L_{{t_{n} }}^{{\left( {X_{0} ,Y_{o} } \right)}} \left( {L_{2} ,L_{1} } \right) \) is a strict local maximum point. We proved that the trajectory inside V will be always be trapped in this area already (invariant set). That is to say, the trajectory moves spirally around critical point \( \left( {L_{2} ,L_{1} } \right) \). It indicates the trajectory will move across the nullcline X = L2 countless times. So, there is a doubly infinite sequence \( \ldots < t_{ - 1} < t_{0} < t_{1} \ldots \) and \( L_{{t_{n} }}^{{\left( {X_{0} ,Y_{o} } \right)}} \left( {X,Y} \right) \) will move across X = L2 countless times. If \( \left( {X_{0} ,Y_{0} } \right) \) is not on a close orbit, when \( L_{{t_{n} }}^{{\left( {X_{0} ,Y_{o} } \right)}} \left( {X,Y} \right) \) intersects with X = L2, the intersections are monotone on X = L2. Since there is no limit circle, \( L_{{t_{n} }}^{{\left( {X_{0} ,Y_{o} } \right)}} \left( {X,Y} \right) \) should approach to (L2, L1), when either \( n \to + \infty ,\;{\text{or}}\;n \to - \infty \). Also, we have \( L_{{t_{n} }}^{{\left( {x_{0} ,y_{o} } \right)}} \left( {x,y} \right) \) is a constant along a certain solution; this indicates

$$ L_{{t_{n} }}^{{\left( {X_{0} ,Y_{o} } \right)}} \left( {X_{0} ,Y_{0} } \right) = L\left( {L_{2} , L_{1} } \right) $$

However, this contradicts with (L2, L1) is a strict local maximum point.

1.2 Proof of system having continuous first-order partial derivative meets the local Lipschitz condition

Here, I concentrate on plane autonomous systems which are applied in the paper. Readers can check Perko (2013) for more general cases. Let the system be

$$ \left\{ {\begin{array}{*{20}c} {\frac{{{\text{d}}x}}{{{\text{d}}t}} = f\left( {x,y} \right)} \\ {\frac{{{\text{d}}y}}{{{\text{d}}t}} = g\left( {x,y} \right)} \\ \end{array} } \right. $$

Both \( f\left( {x,y} \right) \) and \( g\left( {x,y} \right) \) have continuous first-order partial derivatives for x and y. Then we have

$$ \frac{{||G\left( {t_{2} ;X_{2} } \right) - G\left( {t_{1} ;X_{1} } \right)||}}{{||X_{2} - X_{1} ||}} = \sqrt {\frac{{\left[ {f\left( {x_{2} ,y_{2} } \right) - f\left( {x_{1} ,y_{1} } \right)} \right]^{2} + \left[ {g\left( {x_{2} ,y_{2} } \right) - g\left( {x_{1} ,y_{1} } \right)} \right]^{2} }}{{\left( {x_{2} - x_{1} } \right)^{2} + \left( {y_{2} - y_{1} } \right)^{2} }}} , $$

where \( G\left( {t_{i} , X_{i} } \right),\quad i = 1,2 \) is the state of the system. Suppose that, when t1 and t2 are very close, then we can linearize the part

$$ \left[ {f\left( {x_{2} ,y_{2} } \right) - f\left( {x_{1} ,y_{1} } \right)} \right]^{2} + \left[ {g\left( {x_{2} ,y_{2} } \right) - g\left( {x_{1} ,y_{1} } \right)} \right]^{2} $$

as follow

$$ \left[ {\frac{\partial f}{\partial x}{\mid }_{{x = x_{1} ,y = y_{1} }} \left( {x_{2} - x_{1} } \right) + \frac{\partial f}{\partial y}{\mid }_{{x = x_{1} ,y = y_{1} }} \left( {y_{2} - y_{1} } \right)} \right]^{2} + \left[ {\frac{\partial g}{\partial x}{\mid }_{{x = x_{1} ,y = y_{1} }} \left( {x_{2} - x_{1} } \right) + \frac{\partial g}{\partial y}{\mid }_{{x = x_{1} ,y = y_{1} }} \left( {y_{2} - y_{1} } \right)} \right]^{2} $$

which is less than or equal to

$$ 2\left[ {\left( {\frac{\partial f}{\partial x}{\mid }_{{x = x_{1} ,y = y_{1} }} } \right)^{2} + \left( {\frac{\partial g}{\partial x}{\mid }_{{x = x_{1} ,y = y_{1} }} } \right)^{2} } \right]\left( {x_{2} - x_{1} } \right)^{2} + 2\left[ {\left( {\frac{\partial f}{\partial y}{\mid }_{{x = x_{1} ,y = y_{1} }} } \right)^{2} + \left( {\frac{\partial g}{\partial y}{\mid }_{{x = x_{1} ,y = y_{1} }} } \right)^{2} } \right]\left( {y_{2} - y_{1} } \right)^{2} $$

Based on our assumption of continuous first-order partial derivatives for x and y, \( \frac{\partial f}{\partial x}{\mid }_{{x = x_{1} ,y = y_{1} }} ,\quad \frac{\partial g}{\partial x}{\mid }_{{x = x_{1} ,y = y_{1} }} ,\quad \frac{\partial f}{\partial y}{\mid }_{{x = x_{1} ,y = y_{1} }} ,\quad \frac{\partial g}{\partial y}{\mid }_{{x = x_{1} ,y = y_{1} }} \)should be all bounded in the compact set \( [0,K] \times [0,K] \). Thus, we have

$$ \left( {\frac{\partial f}{\partial x}{\mid }_{{x = x_{1} ,y = y_{1} }} } \right)^{2} + \left( {\frac{\partial g}{\partial x}{\mid }_{{x = x_{1} ,y = y_{1} }} } \right)^{2} $$

and

$$ \left( {\frac{\partial f}{\partial y}{\mid }_{{x = x_{1} ,y = y_{1} }} } \right)^{2} + \left( {\frac{\partial g}{\partial y}{\mid }_{{x = x_{1} ,y = y_{1} }} } \right)^{2} $$

are bounded, let both of them less than L (L ≥ 0). Then

$$ \begin{aligned} & \left[ {\frac{\partial f}{\partial x}{\mid }_{{x = x_{1} ,y = y_{1} }} \left( {x_{2} - x_{1} } \right) + \frac{\partial f}{\partial y}{\mid }_{{x = x_{1} ,y = y_{1} }} \left( {y_{2} - y_{1} } \right)} \right]^{2} \\ & \quad + \left[ {\frac{\partial g}{\partial x}{\mid }_{{x = x_{1} ,y = y_{1} }} \left( {x_{2} - x_{1} } \right) + \frac{\partial g}{\partial y}{\mid }_{{x = x_{1} ,y = y_{1} }} \left( {y_{2} - y_{1} } \right)} \right]^{2} \\ & \quad \le 2\left[ {\left( {\frac{\partial f}{\partial x}{\mid }_{{x = x_{1} ,y = y_{1} }} } \right)^{2} + \left( {\frac{\partial g}{\partial x}{\mid }_{{x = x_{1} ,y = y_{1} }} } \right)^{2} } \right]\left( {x_{2} - x_{1} } \right)^{2} \\ & \quad + 2\left[ {\left( {\frac{\partial f}{\partial y}{\mid }_{{x = x_{1} ,y = y_{1} }} } \right)^{2} + \left( {\frac{\partial g}{\partial y}{\mid }_{{x = x_{1} ,y = y_{1} }} } \right)^{2} } \right]\left( {y_{2} - y_{1} } \right)^{2} \\ & \quad \le 2L\left[ {\left( {x_{2} - x_{1} } \right)^{2} + \left( {y_{2} - y_{1} } \right)^{2} } \right]. \\ \end{aligned} $$

Therefore, we have

$$ \frac{{||G\left( {t_{2} ;X_{2} } \right) - G\left( {t_{1} ;X_{1} } \right)||}}{{||X_{2} - X_{1} ||}} = \sqrt {\frac{{\left[ {f\left( {x_{2} ,y_{2} } \right) - f\left( {x_{1} ,y_{1} } \right)} \right]^{2} + \left[ {g\left( {x_{2} ,y_{2} } \right) - g\left( {x_{1} ,y_{1} } \right)} \right]^{2} }}{{\left( {x_{2} - x_{1} } \right)^{2} + \left( {y_{2} - y_{1} } \right)^{2} }}} \le \sqrt {2L} , $$

where \( \sqrt {2L} \) can be treated as the Lipschitz constant.

1.3 Proof of Proposition 2

The Jacobian matrix of the system is:

$$ \left[ {\begin{array}{*{20}c} {\left( {1 - \frac{2X}{K}} \right)\left( {r - \sigma Y + \frac{{\sigma Y^{2} }}{K}} \right)} & { - \sigma X\left( {1 - \frac{X}{K}} \right)\left( {1 - \frac{2Y}{K}} \right)} \\ { - \sigma Y\left( {1 - \frac{Y}{K}} \right)\left( {1 - \frac{2X}{K}} \right)} & {\left( {1 - \frac{2Y}{K}} \right)\left( {r - \sigma X + \frac{{\sigma X^{2} }}{K}} \right)} \\ \end{array} } \right] $$

The critical point (0, 0): At this point we have the matrix

$$ \left[ {\begin{array}{*{20}c} r & 0 \\ 0 & r \\ \end{array} } \right]. $$

So, we obtain the two eigenvalues \( \lambda_{1} = \lambda_{2} = r > 0 \). Therefore, this is an unstable node.

The critical point (K, K): At this point we have the matrix

$$ \left[ {\begin{array}{*{20}c} { - r} & 0 \\ 0 & { - r} \\ \end{array} } \right]. $$

So, we obtain the two eigenvalues \( \lambda_{1} = \lambda_{2} = - r < 0 \). Therefore, this is a stable node.

The critical points (K, 0) and (0, K): At these two points, we have the matrixes

$$ \left[ {\begin{array}{*{20}c} { - r} & 0 \\ 0 & r \\ \end{array} } \right]\;{\text{and}}\;\left[ {\begin{array}{*{20}c} r & 0 \\ 0 & { - r} \\ \end{array} } \right]. $$

Apparently, the eigenvalues of these two matrixes are two real numbers with different signs (r and − r), so (K, 0) and (0, K) are saddle points.

The critical points (\( L_{1} ,L_{1} \)) and (\( L_{2} ,L_{2} \)): At these two points, we have the matrixes

$$ \left[ {\begin{array}{*{20}c} 0 & { - \sigma L_{i} \left( {1 - \frac{{L_{i} }}{k}} \right)\left( {1 - \frac{{2L_{i} }}{K}} \right)} \\ { - \sigma L_{i} \left( {1 - \frac{{L_{i} }}{k}} \right)\left( {1 - \frac{{2L_{i} }}{K}} \right)} & 0 \\ \end{array} } \right]. $$

For each point, we get the eigenvalues \( \lambda = \pm \sigma L_{i} \left( {1 - \frac{{L_{i} }}{K}} \right)\left( {1 - \frac{{2L_{i} }}{K}} \right) \), i = 1, 2, so (\( L_{1} ,L_{1} \)) and (\( L_{2} ,L_{2} \)) are saddle points.

The critical point (\( L_{1} ,L_{2} \)): At this point we have the matrix

$$ \left[ {\begin{array}{*{20}c} 0 & { - \sigma L_{1} \left( {1 - \frac{{L_{1} }}{K}} \right)\left( {1 - \frac{{2L_{2} }}{K}} \right)} \\ { - \sigma L_{2} \left( {1 - \frac{{L_{2} }}{K}} \right)\left( {1 - \frac{{2L_{1} }}{K}} \right)} & 0 \\ \end{array} } \right]. $$

We have

$$ \lambda^{2} = \sigma^{2} L_{2} L_{1} \left( {1 - \frac{{L_{2} }}{K}} \right)\left( {1 - \frac{{2L_{1} }}{K}} \right)\left( {1 - \frac{{L_{1} }}{K}} \right)\left( {1 - \frac{{2L_{2} }}{K}} \right). $$

Notice that

$$ L_{1} < \frac{K}{2}\;{\text{and}}\;L_{2} > \frac{K}{2}, $$

thus

$$ \sigma^{2} L_{2} L_{1} \left( {1 - \frac{{L_{2} }}{K}} \right)\left( {1 - \frac{{2L_{1} }}{K}} \right)\left( {1 - \frac{{L_{1} }}{K}} \right)\left( {1 - \frac{{2L_{2} }}{K}} \right) < 0. $$

Let

$$ \sigma^{2} L_{2} L_{1} \left( {1 - \frac{{L_{2} }}{K}} \right)\left( {1 - \frac{{2L_{1} }}{K}} \right)\left( {1 - \frac{{L_{1} }}{K}} \right)\left( {1 - \frac{{2L_{2} }}{K}} \right) = - a, $$

and we have

$$ \lambda = \pm \sqrt a i. $$

The case is similar to the case of the point (\( L_{2} ,L_{1} \)). Thus, they are two spiral points.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H. When one stock share is a biological individual: a stylized simulation of the population dynamics in an order-driven market. Decisions Econ Finan 43, 373–408 (2020). https://doi.org/10.1007/s10203-019-00273-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10203-019-00273-8

Keywords

JEL Classification

Navigation