Skip to main content
Log in

Estimating stochastic volatility: the rough side to equity returns

  • Published:
Decisions in Economics and Finance Aims and scope Submit manuscript

Abstract

This paper evaluates the forecasting performance of a Brownian semi-stationary (BSS) process in modelling the volatility of 21 equity indices. We implement a hybrid scheme to simulate BSS processes with high efficiency and precision. These simulations are useful to price derivatives, accounting for rough volatility. We then calibrate the BSS parameters for the realised kernel of 21 equity indices, using data from the Oxford-Man Institute. Finally, we conduct one-step and ten-step ahead forecasts on six indices and find that the BSS outperforms benchmarks, including a Log-HAR specification, in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. This has been done using the autocorr and fmincon commands in MATLAB.

  2. To implement this matrix multiplication in practice, the ‘fliplr’ command in MATLAB is used on the \(\varGamma _{12} \) matrix to ensure the correct time order of correlation lags.

  3. Note that estimation error is a delicate issue here, which is what Patton (2011) aims to address with robust loss functions. Patton (2011) derives a class of loss functions which, when used with an unbiased volatility proxy such as realised kernels, can be used to rank volatility models (see Sect. 3.1).

References

  • Alòs, E., Leòn, J., Vives, J.: On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility. Finance Stoch. 11(4), 571–589 (2007)

    Article  Google Scholar 

  • Andersen, T.G., Bollerslev, T.: Answering the skeptics: yes, standard volatility models do provide accurate forecasts. Int. Econ. Rev. 39, 885–905 (1998)

    Article  Google Scholar 

  • Andersen, T.G., Bollerslev, T., Diebold, F.X., Labys, P.: The distribution of realized exchange rate volatility. J. Am. Stat. Assoc. 96(453), 42–55 (2001)

    Article  Google Scholar 

  • Andersen, T.G., Bollerslev, T., Diebold, F.X., Labys, P.: Modeling and forecasting realized volatility. Econometrica 71(2), 579–625 (2003)

    Article  Google Scholar 

  • Barndorff-Nielsen, O.E.: Econometric analysis of realized volatility and its use in estimating stochastic volatility models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 64(2), 253–280 (2002)

    Article  Google Scholar 

  • Barndorff-Nielsen, O.E., Schmiegel, J.: Brownian semistationary processes and volatility/intermittency. Adv. Financ. Model. 8, 1–25 (2009)

    Google Scholar 

  • Barndorff-Nielsen, O.E., Hansen, P.R., Lunde, A., Shephard, N.: Designing realized kernels to measure the ex post variation of equity prices in the presence of noise. Econometrica 76(6), 1481–1536 (2008)

    Article  Google Scholar 

  • Barndorff-Nielsen, O.E., Hansen, P.R., Lunde, A., Shephard, N.: Realized kernels in practice: trades and quotes. Econom. J. 12(3), C1–C32 (2009)

    Article  Google Scholar 

  • Bayer, C., Friz, P., Gatheral, J.: Pricing under rough volatility. Quant. Finance 16(6), 887–904 (2016)

    Article  Google Scholar 

  • Bennedsen, M., Lunde, A., Pakkanen, M.S.: Decoupling the short-and long-term behavior of stochastic volatility (2016). arXiv:1610.00332

  • Bennedsen, M., Lunde, A., Pakkanen, M.S.: Hybrid scheme for brownian semistationary processes. Finance Stoch. 21(4), 931–965 (2017)

    Article  Google Scholar 

  • Beran, J.: Statistics for Long-Memory Processes, vol. 61. CRC Press, Boca Raton (1994)

    Google Scholar 

  • Brownlees, C.T., Gallo, G.M.: Comparison of volatility measures: a risk management perspective. J. Financ. Econom. 8(1), 29–56 (2009)

    Article  Google Scholar 

  • Comte, F., Renault, E.: Long memory continuous time models. J. Econom. 73(1), 101–149 (1996)

    Article  Google Scholar 

  • Di Matteo, T., Aste, T., Dacorogna, M.: Scaling behaviors in differently developed markets. Phys. A Stat. Mech. Appl. 324(1), 183–188 (2003)

    Article  Google Scholar 

  • Diebold, F.X., Mariano, R.S.: Comparing predictive accuracy. J. Bus. Econ. Stat. 13(3), 253–263 (1995)

    Google Scholar 

  • Dieker, T.: Simulation of fractional Brownian motion. Ph.D. Thesis, University of Twente (2004)

  • Ding, Z., Granger, C.W., Engle, R.F.: A long memory property of stock market returns and a new model. J. Empir. Finance 1(1), 83–106 (1993)

    Article  Google Scholar 

  • Fama, E.F.: The behavior of stock-market prices. J. Bus. 38(1), 34–105 (1965)

    Article  Google Scholar 

  • Gatheral, J., Jaisson, T., Rosenbaum, M.: Volatility is rough. Quant. Finance 18(6), 933–949 (2018)

    Article  Google Scholar 

  • Hansen, P.R., Lunde, A.: Realized variance and market microstructure noise. J. Bus. Econ. Stat. 24(2), 127–161 (2006)

    Article  Google Scholar 

  • Harvey, A.C.: Long Memory in Stochastic Volatility, Chapter 16 in ’Forecasting Volatility in the Financial Markets, pp. 307–320. Butterworth Heinemann, Oxford (1998)

    Google Scholar 

  • Heber, G., Lunde, A., Shephard, N., Sheppard, K.: Oxford-Man Institute’s realized library, version 0.1 (2009)

  • Heynen, R.C., Kat, H.M.: Volatility prediction: a comparison of the stochastic volatility, garch (1, 1) and egarch (1, 1) models. J. Deriv. 2(2), 50–65 (1994)

    Article  Google Scholar 

  • Hurst, H.E., Black, R.P., Simaika, Y.: Long-term storage: an experimental study. Constable, London (1965)

    Google Scholar 

  • Jacod, J., Li, Y., Mykland, P.A., Podolskij, M., Vetter, M.: Microstructure noise in the continuous case: the pre-averaging approach. Stoch. Process. Appl. 119(7), 2249–2276 (2009)

    Article  Google Scholar 

  • Karatzas, I., Shreve, S.E. (eds.): Brownian motion. In: Motion and Stochastic Calculus. Springer, New York, pp. 47–127 (1998)

  • Mandelbrot, B.: The variation of certain speculative prices. J. Bus. 36, 394–419 (1963)

    Article  Google Scholar 

  • Mandelbrot, B.B., Van Ness, J.W.: Fractional brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968)

    Article  Google Scholar 

  • Patton, A.J.: Volatility forecast comparison using imperfect volatility proxies. J. Econom. 160(1), 246–256 (2011)

    Article  Google Scholar 

  • Poon, S.-H., Granger, C.W.: Forecasting volatility in financial markets: a review. J. Econ. lit. 41(2), 478–539 (2003)

    Article  Google Scholar 

  • Shephard, N., Sheppard, K.: Realising the future: forecasting with high-frequency-based volatility (heavy) models. J. Appl. Econom. 25(2), 197–231 (2010)

    Article  Google Scholar 

  • Yu, J.: Forecasting volatility in the New Zealand stock market. Appl. Financ. Econ. 12(3), 193–202 (2002)

    Article  Google Scholar 

  • Zhang, L., et al.: Efficient estimation of stochastic volatility using noisy observations: a multi-scale approach. Bernoulli 12(6), 1019–1043 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Haynes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors would like to thank Christian Brownlees, Eulalia Nualart, Alex Badran and two anonymous referees for their detailed comments and valuable suggestions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haynes, J., Schmitt, D. & Grimm, L. Estimating stochastic volatility: the rough side to equity returns. Decisions Econ Finan 42, 449–469 (2019). https://doi.org/10.1007/s10203-019-00261-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10203-019-00261-y

Keywords

JEL Classification

Navigation