Skip to main content
Log in

Geophysical Support of Advanced Autonomous Magnetometric Navigation Systems

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The paper describes the relevance and advantages of the geophysical support for autonomous magnetometric navigation systems (MNS). Theoretical data on the Earth’s magnetic field components are considered, and the displacement of magnetic poles in international models of the Earth’s main magnetic field is analyzed. The prospects for mapping and software support of MNS are discussed. The results obtained in the flight studies of the experimental MNS are used in the development and control of MNS databases, centralization and application of digital mapping products for geological exploration, as well as in the course of various studies concerned with earth sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Grewal, M.S., Andrews, A.P., and Bartone, C., Global Navigation Satellite Systems, Inertial Navigation, and Integration; 3rd ed., John Wiley & Sons: Hoboken, 2013.

    Google Scholar 

  2. Groves, P.D., Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems; GNSS Technology and Application Series, 2nd ed., Artech House: Boston, 2013.

    MATH  Google Scholar 

  3. Koshaev, D.A, Redundancy and lack of information in specific problems of GNSS measurement processing, Gyroscopy and Navigation, 2015, no. 6, pp. 172–187.

  4. Emelyantsev, G.I., Stepanov, A.P., and Blazhnov, B.A., On the solution of the navigation problem for aircraft us-ing MEMS inertial modules and ground-based radio fixes, Giroskopiya i navigatsiya, 2017, vol. 25, no. 1, pp. 3–17.

  5. Schmidt, G.T., GPS Based Navigation Systems in Difficult Environments, Gyroscopy and Navigation, Gyroscopy and Navigation, 2019, no. 10, pp. 41–53

  6. Krasovskii, A.A., Beloglazov, I.N., and Chigin G.P., Teoriya korrelyatsionno-ekstremal’nykh navigatsionnykh system (The Theory of Correlation-Extreme Navigation System), Moscow: Nauka, 1979.

  7. Bochkarev, A.M., Correlation-extreme navigation systems (review), Zarubezhnaya radioelektronika, 1981, no. 9, pp. 28–53.

  8. Stepanov, O.A., Metody otsenki potentsial’noy tochnosti v korrelyatsionno-ekstremal’nykh navigatsionnykh sistemakh (Methods for estimating potential accuracy in correlation-extreme navigation systems), St. Petersburg: CSRI Elektropribor, 1993.

  9. Kiselev, S.K. Correlation-extreme navigation using the field of magnetic anomalies of extended landmarks, Izvestiya RAN. Teoriya i sistemy upravleniya, 1997, no. 6, p. 56.

  10. Minligareev, V.T., Alekseeva, A.V., Kachanovskii, Yu.M. et al., Mapping support of alternative navigation in the geophysical fields of the Earth, Aviakosmicheskoe priborostroenie, 2018, no. 11, pp. 18–22.

  11. Minligareev, V.T., Repin, A.Yu., Khotenko, E.N. et al., Mapping support of magnetometric navigation systems of robotic complexes, Izvestiya YuFU. Tekhnicheskiye nauki. Perspektivnye sistemy i zadachi upravleniya, Rostov-na-Donu, 2019, no. 1 (203), pp. 248–258.

  12. Goldenberg, F., Geomagnetic navigation beyond the magnetic compass, Proc. IEEE/ION PLANS, 2006, pp. 684–694.

  13. Canciani, A.J. and Raquet, J.F., Absolute positioning using the Earth’s magnetic anomaly field, Proc. of the Institute of Navigation 2015 International Technical Meeting, 2015, pp. 265‒278.

  14. Stepanov, O.A. and Toropov, A.B., Nonlinear filtering for map-aided navigation, Part 1. An overview of algorithms, Gyroscopy and Navigation, 2015, vol. 6, no. 4, pp. 324–337.

    Article  Google Scholar 

  15. Sazonova, T.V. and Shelagurova, M.S., Geoinformatsiya v kompleksakh bortovogo oborudovaniya letatel’nykh apparatov (Geoinformation in airborne integrated system), Moscow, 2018, pp. 80–97.

  16. Fournier et al., A candidate secular variation model for IGRF-12 based on data and inverse geodynamo modeling, Earth, Planets and Space, 2015.

  17. Cain, J.C, Hendricks, S.J., Langel, R.A., and Hudson, W.V.A., Proposed Model for International Geomagnetic Reference Field. 1965, J. Geomagn. and Geoelectr., 1967, vol.19, no. 4, pp. 335–355.

    Article  Google Scholar 

  18. Calculation of the magnetic field: NOAA site [Electronic resource]. 2016. URL: http://www.ngdc.noaa.gov/geomag-web/?model=igrf#igrfwmm (appeal date:14.08.2020).

  19. Changing the IGRF model: NOAA website [Electronic resource]. https://www.ncei.noaa.gov/news/world-magnetic-model-out-cycle-release (contact date: 14.08.2020).

  20. Osipov, O.D., Minligareev, V.T., Kopytenko, Yu.A. et al., Study of the drift of the Earth’s south magnetic pole and the magnetic field of the World Ocean in the round-the-world oceanographic expedition aboard the Russian Navy research vessel Admiral Vladimirsky, Russian Geographical Society. 08.06.2020. https://www. rgo.ru/ru/article/chto-novogo-uznali-uchyonye-o-dreyfe-magnitnogo-polyusa-zemli-i-magnitnogo-polya-mirovogo

  21. Tsirel’, V.S., Aeromagnetometry: from A.A. Logachev to the present day, Geofizika. 1999, no. 2, pp. 4‒6.

  22. Dzhandzhgava, G.I. and Sazonova, T.V. Mathematical simulation of algorithms for determining the coordinates of an unmanned underwater vehicle using information on the the Earth’s physical fields, Izvestiya YuFU. Tekhnicheskiye nauki, 2016, no. 1 (174), pp. 102–110.

  23. Kiselev, L.V., Kostousov, V.B., Medvedev, A.V. et al., On gravimetry from the board of an autonomous underwater robot and estimates of its informativity for map-aided navigation, Podvodnye issledovaniya i robototekhnika, 2019, 1 (27), pp. 21‒30.

  24. Pavlis, N.K., Holmes, S.A., Kenyon, S.C., and Factor, J.K., The Earth gravitational model 2008 (EGM2008), Journal of Geophysical Research, 2012, vol. 117, b04406.

    Article  Google Scholar 

  25. Barthelmes, F., Definition of the functional relationship of the spirical harmonic models, Potesdam – Deutsches GeoForschungs Zentrum, Scientific Technical Report STR09, 02. 2009.

  26. Sovremennye metody i sredstva izmerenya parametrov gravitatsionnogo polya Zemli (Modern technologies and methods for measuring the Earth’s gravity field parameters), Eds., V.G. Peshekhonov, O.A. Stepanov, St. Petersburg, Concern CSRI Elektropribor, 2017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. T. Minligareev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minligareev, V.T., Sazonova, T.V., Arutyunyan, D.A. et al. Geophysical Support of Advanced Autonomous Magnetometric Navigation Systems. Gyroscopy Navig. 11, 350–356 (2020). https://doi.org/10.1134/S2075108720040082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108720040082

Keywords:

Navigation