Skip to main content
Log in

Problem of the Vertical Deflection in High-Precision Inertial Navigation

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The paper addresses the systematic error of an inertial navigation system, caused by the discrepancy between the plumb line and the normal to the reference ellipsoid surface. The methods of this discrepancy estimation, and their use for correcting the output data of inertial navigation systems are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. In geophysics, it is commonly called a spring balance.

  2. Vertical deflection to 1 arc sec results in the error of coordinates determination equal to 30 m; deflection to 1 arc min—1 nautical mile.

REFERENCES

  1. Peshekhonov, V.G., Stepanov, O.A., et al. Sovremennye metody i sredstva izmereniya parametrov gravitatsionnogo polya Zemli (Modern Methods and Means of Measuring the Parameters of the Earth Gravity Field), Ed. Peshekhonov, V.G., Stepanov, O.A., Saint Petersburg: Concern CSRI Elektropribor, JSC, 2017.

  2. Koneshov, V.N., Evstifeev, M.I., Chelpanov, I.B., and Yashnikova, O.M., Methods for determining deflections of the vertical on a moving base, Gyroscopy and Navigation, 2016, vol. 7, no. 4, pp. 326–336.

    Article  Google Scholar 

  3. Grushinskii, N.P., Teoriya figury Zemli (Theory of the Earth’s Shape), Moscow: Nauka, 1976.

  4. Evstifeev, M.I., The state of the art in the development of onboard gravity gradiometers, Gyroscopy and Navigation, 2017, vol. 8, no. 1, pp. 68–79.

    Article  Google Scholar 

  5. Rummel, R., Yi, W., and Stummer, C., GOCE gravitational gradiometry, Journal of Geodesy, 2011, vol. 85, no. 11, article no. 777.

    Article  Google Scholar 

  6. Hirt, Ch., et al., Modern determination of vertical deflections using digital zenith cameras, Journal Surveying Engineering, 2010, vol. 136, no. 1, pp. 1–12.

  7. Hao Xiong, Dongkai Dai, Yingwei Zhao, Xingshu Wang, Jiaxing Zheng, and Dejun Zhan, An analysis of the attitude estimation errors caused by the deflections of vertical in the integration of rotational INS and GNSS, Sensors, 2019, vol. 19, p. 1721. https://doi.org/10.3390/s19071721

    Article  Google Scholar 

  8. Dongkai Dai, Xingshu Wang, Dejun Zhan, Shiqiao Qin, and Zongsheng Huang, Dynamic measurement of high-frequency deflections of the vertical based on the observation of INS/GNSS integration attitude error, Journal of Applied Geophysics, 2015, vol. 119, pp. 89–98. https://doi.org/10.1016/j.jappgeo.2015.05.010

    Article  Google Scholar 

  9. Krasovskii, A.A., Ways of development of onboard rotary gravity gradiometers, Oboronnaya tekhnika, 1983, no. 6, pp. 52–57.

  10. Avgustov, L.I., and Soroka, A.I., Airborne gravivariometer. Experience of the development and test results, Mekhatronics, Automation, Control, 2009, no. 3, pp. 51—56.

  11. Soroka, A.I., On the development of onboard meters of geopotential second derivatives, in: Gravimetriya i geodeziya (Gravimetry and Geodesy), Brovar, V.V. et al., Moscow: Nauchnyi mir, 2010.

  12. Anuchin, O.N., Karakashev, V.A., and Emel’yantsev, G.I., Effect of geodetic uncertainties on errors of inertial navigation systems, Sudostroenie za rubezhom, 1982, no. 5(155).

  13. Peshekhonov, V.G., Nesenyuk, L.P., Starosel’tsev, L.P., and Elinson, L.S., SuVDye sredstva izmereniya gravitatsionnogo polya Zemli (Ship Means of the Earth’s Gravitational Field Measurement), Leningrad: TsNII Rumb, 1989.

  14. Anuchin, O.N., Inertial methods for determining the Earth’s gravitational field parameters at sea, Doctoral (Eng.) Dissertation, St. Petersburg: Institute of Precision Mechanics and Optics (ITMO),1992.

  15. Dmitriev, S.P., and Shimilevich, L.I., Stokhasticheskoe opisanie anomal’nykh geofizicheskikh polei i oshibok ikh kartografirovaniya (Stochastic Description of Anomalous Physical Fields and Their Mapping Errors), Leningrad: TsNII Rumb, 1985.

  16. Peshekhonov, V.G., Sokolov, A.V., Zheleznyak, L.K., Bereza, A.D., and Krasnov, A.A., Role of navigation technologies in mobile gravimeters development, Gyroscopy and Navigation, 2020, vol. 11, no. 1, pp. 2–12.

    Article  Google Scholar 

  17. Sokolov, A.V., Krasnov, A.A., Koneshov, V.N., and Glazko, V.V., The first high-precision gravity survey in the North Pole region, Izvestiya, Physics of the Solid Earth, 2016, vol. 52, no. 2, pp. 254–258.

    Article  Google Scholar 

  18. Vol’fson, G.B., Options for solving the problem of onboard gravity variometer development, Doctoral (Eng.) Dissertation, St. Petersburg, 1997.

  19. Peshekhonov, V.G., and Vol’fson, G.B., On solution of a problem of gravity variometer development for application on rocking base, Dokl. Akad. Nauk, 1996, vol. 351, no. 6, pp. 766–768.

    Google Scholar 

  20. Vasil’ev, V.A. et al., All-latitude automated astrolabe, Kinematika i fizika nebesnykh tel, 1991, vol. 2, no. 3.

  21. Vasil’ev, V.A. et al., Ship astrogeodetic system for the vertical deflection, in: Sudostroitel’naya promyshlennost’. Seriya “Navigatsiya i giriskopiya” (Shipbuilding Industry. Navigation and Gyroscopy Series), 1991, no. 2, pp. 51–56.

  22. Vasil’ev, V.A. et al., Televisional astrolabe, in: Sudostroitel’naya promyshlennost’. Seriya “Navigatsiya i giriskopiya” (Shipbuilding Industry. Navigation and Gyroscopy Series), 1991, no. 2, pp. 57–61.

  23. Tsodokova, V.V., Gaivoronskii, S.V., Tarasov, S.M., and Rusin, E.V., Astronomic coordinates determination by means of an automated zenith telescope, Proc. Conference of young scientists “Navigation and Motion Control”, St. Petersburg: CSRI Elektropribor, 2014, pp. 269–276.

  24. Gaivoronskii, S.V., Rusin, E.V., and Tsodokova, V.V., Stars identification at the astronomic coordinates determination by means of an automated zenith telescope, Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol. 15, no. 1, pp. 22–29.

    Google Scholar 

  25. Dmitriev, S.P., Inertsial’nye metody v inzhenernoi geodezii (Inertial Methods in Engineering Geodesy), St. Petersburg: CSRI Elektropribor, 1997.

  26. Emel’yantsev, G.I., Blazhnov, B.A., and Stepanov, A.P., Vertical deflection determination in high latitudes using precision IMU and two-antenna GNSS system, Gyroscopy and Navigation, 2015, vol. 6, no. 4, pp. 305–309.

    Article  Google Scholar 

  27. Peshekhonov, V.G., Vasil’ev, V.A., and Zinenko, V.M., Measuring vertical deflection in the ocean, combining GPS, INS and star trackers, Proc. of the 3 rd International Workshop “High-Precision Navigation”, Stuttgart, Germany, 1995, pp. 180–185.

Download references

ACKNOWLEDGMENTS

The author is grateful to O.A. Stepanov, A.V. Sokolov and M.I. Evstifeev for their useful comments when discussing the paper.

Funding

This work was supported by the Russian Science Foundation, project no. 18-19-00627.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Peshekhonov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peshekhonov, V.G. Problem of the Vertical Deflection in High-Precision Inertial Navigation. Gyroscopy Navig. 11, 255–262 (2020). https://doi.org/10.1134/S2075108720040094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108720040094

Keywords:

Navigation