Skip to main content
Log in

Thermal Expansion and Thermal Conductivity of (In2S3)x(AgIn5S8)1 – x Alloys

  • NONELECTRONIC PROPERTIES OF SEMICONDUCTORS (ATOMIC STRUCTURE, DIFFUSION)
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The thermal expansion and thermal conductivity of In2S3 and AgIn5S8 single-crystal compounds and (In2S3)x(AgIn5S8)1 – x alloys grown by the Bridgman method are studied. It is established that the thermal-expansion coefficient linearly varies under changes in the composition parameter x and the thermal conductivity has a minimum for the equimolar composition. From experimental data on the thermal-expansion coefficient, the Debye temperature and the root-mean-square (rms) dynamic displacements of atoms are calculated. It is shown that, as the content of Ag atoms in the alloys is increased, the Debye temperature increases and the rms dynamic displacements of atoms in the crystal lattice decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. N. Kh. Abrikosov, V. F. Bankina, L. V. Poretskaya, E. V. Skudnova, and S. N. Chizhevskaya, Semiconducting Chalcogenide Alloys Based on Them (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  2. I. V. Bodnar’, V. A. Polubok, V. Yu. Rud’, and Yu. V. Rud’, Semiconductors 37, 1308 (2003).

    Article  ADS  Google Scholar 

  3. S. Sebentritt, Solar Energy 77, 767 (2004).

    Article  ADS  Google Scholar 

  4. B. Asenjo, A. M. Chaparro, M. T. Gutierrez, J. Herrero, and J. Klaer, Sol. Energy Mater. Sol. Cells 87, 647 (2005).

    Article  Google Scholar 

  5. T. Schulmeyer, A. Klein, R. Kniese, and M. Powalla, Appl. Phys. Lett. 85, 961 (2004).

    Article  ADS  Google Scholar 

  6. I. V. Bodnar’, E. A. Kudritskaya, I. K. Polushina, V. Yu. Rud’, and Yu. V. Rud’, Semiconductors 32, 933 (1998).

    Article  ADS  Google Scholar 

  7. V. Yu. Rud’, Yu. V. Rud’, I. V. Bodnar’, and T. N. Ushakova, Semiconductors 43, 425 (2009).

    Article  ADS  Google Scholar 

  8. I. V. Bodnar’, A. A. Feshchenko, and V. V. Khoroshko, Semiconductors 54 (12) (2020, in press).

  9. C. I. Novikova, Thermal Expansion of Solids (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  10. B. M. Mogilevskii and A. F. Chudnovskii, Thermal Conductivity of Semiconductors (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  11. I. I. Frantsevich, Powder Metallurgy and Material Strength Issues (Akad. Nauk USSR, Kiev, 1956) [in Russian].

    Google Scholar 

Download references

Funding

The study was supported by the Belarusian Republican Foundation for Basic Research, project no. T20MV-007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Bodnar.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodnar, I.V., Feshchenko, A.A. & Khoroshko, V.V. Thermal Expansion and Thermal Conductivity of (In2S3)x(AgIn5S8)1 – x Alloys. Semiconductors 55, 133–136 (2021). https://doi.org/10.1134/S1063782621020081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782621020081

Keywords:

Navigation