Skip to main content
Log in

Radiative Recombination at Ion-Induced Defects in Cu(In,Ga)Se2 Alloy Thin Films

  • SPECTROSCOPY, INTERACTION WITH RADIATION
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Radiation-induced effects in Cu(In,Ga)Se2 alloy thin films after implantation with hydrogen ions with energies of 2.5, 5, and 10 keV and a dose of ~3 × 1015 cm–2 are studied. Comparative analysis of the optical characteristics of nonimplanted and hydrogen-implanted Cu(In,Ga)Se2 films is conducted on the basis of photoluminescence spectra and luminescence-excitation spectra recorded at liquid-helium temperature (~4.2 K). The band gap determined for Cu(In,Ga)Se2 alloys by mathematical processing of the luminescence-excitation spectra is ~1.171 eV. In the photoluminescence spectra of nonimplanted and hydrogen-implanted Cu(In,Ga)Se2 films, an intense band is detected, with a maximum at ~1.089 eV. The band is defined by the recombination of free electrons with holes localized in the valence-band tails. It is established that broad bands with maximums at the energies 0.92 and ~0.77 eV are defined by the radiative recombination of nonequilibrium charge carriers at deep energy levels of ion-induced acceptor defects formed in the band gap of Cu(In,Ga)Se2 alloys. The conditions for the effect of the ion passivation of dangling electron bonds at the surface and in the bulk of polycrystalline Cu(In,Ga)Se2 films and the nature of structural point defects and the mechanisms of radiative recombination are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, Science (Washington, DC, U. S.) 352 (6283), aad4424 (2016).

    Article  Google Scholar 

  2. M. A. Green, E. D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, and A. W. Y. Ho-Baillie, Progr. Photovolt.: Res. Appl. 28 (1), 3 (2020).

    Article  Google Scholar 

  3. T. Nishimura, S. Toki, H. Sugiura, N. Nakada, and A. Yamada, Progr. Photovolt.: Res. Appl. 26, 291 (2018).

    Article  Google Scholar 

  4. M. A. Contreras, L. M. Mansfield, B. Egaas, J. Li, M. Romero, R. Noufi, E. Rudiger-Voight, and W. Mannstadt, Progr. Photovolt.: Res. Appl. 20, 843 (2012).

    Article  Google Scholar 

  5. L. L. Kazmerskii, J. Electron Spectrosc. Rel. Phenom. 150, 105 (2006).

    Article  Google Scholar 

  6. P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, and M. Powalla, Phys. Status Solidi RRL 8, 219 (2014).

    Article  Google Scholar 

  7. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, Phys. Status Solidi RRL 10, 583 (2016).

    Article  Google Scholar 

  8. M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, and H. Sugimoto, IEEE J. Photovolt. 9, 1863 (2019).

    Article  Google Scholar 

  9. M. Imaizumi, T. Sumita, S. Kawakita, K. Aoyama, O. Ansawa, T. Aburaya, T. Hisamatsr, and S. Matsuda, Progr. Photovolt.: Res. Appl. 13, 93 (2005).

    Article  Google Scholar 

  10. K. Weinert, A. Jasenek, and U. Rau, Thin Solid Films 431–432, 453 (2003).

  11. M. V. Yakushev, R. W. Martin, F. Urouhart, A. V. Mudryi, H. W. Schock, J. Krustok, R. D. Pilkington, A. E. Hill, and R. D. Tomlinson, Jpn. J. Appl. Phys. 39 (Suppl. 1), 320 (2000).

    Article  Google Scholar 

  12. M. V. Yakushev, R. W. Martin, J. Krustok, A. V. Mudryi, D. Holman, H. W. Schock, R. D. Pilkington, A. E. Hill, and R. D. Tomlinson, Thin Solid Films 387, 201 (2001).

    Article  ADS  Google Scholar 

  13. B. Dimmler, M. Powalla, and H. W. Schock, Progr. Photovol.: Res. Appl. 10, 149 (2002).

    Article  Google Scholar 

  14. A. V. Mudryi, V. F. Gremenok, A. V. Karotkii, V. B. Zalesskii, M. V. Yakushev, F. Lukkert, and R. Martin, J. Appl. Spectrosc. 77, 371 (2010).

    Article  ADS  Google Scholar 

  15. M. V. Yakushev, I. I. Ogorodnikov, V. A. Volkov, and A. V. Mudryi, J. Vac. Sci. Technol. A 29, 051201 (2011).

    Article  Google Scholar 

  16. D. Fink, J. Krauser, G. Lippold, M. V. Yakushev, R. D. Tomlinson, A. Weidinger, K. K. Dwivedi, S. Ghosh, and W. H. Chung, Rad. Eff. Def. Solids 145, 85 (1998).

    Article  Google Scholar 

  17. T. Tinoco, C. Rincon, M. Quintero, and G. Sanchez Perez, Phys. Status Solidi A 124, 427 (1991).

    Article  ADS  Google Scholar 

  18. E. J. Friedrich, R. Fernandez-Ruiz, J. M. Merino, and M. Leon, Powder Diffract. 25, 253 (2010).

    Article  ADS  Google Scholar 

  19. A. P. Levanyuk and V. V. Osipov, Sov. Phys. Usp. 24, 187 (1981).

    Article  ADS  Google Scholar 

  20. T. Gokmen, O. Gunawan, T. K. Todorov, and D. B. Mitzi, Appl. Phys. Lett. 103, 103506 (2013).

    Article  ADS  Google Scholar 

  21. F. Rong and G. D. Watkins, Phys. Rev. Lett. 58, 1486 (1987).

    Article  ADS  Google Scholar 

  22. M. V. Yakushev, J. Krustok, M. Grossberg, V. A. Volkov, A. V. Mudryi, and R. W. Martin, J. Phys. D.: Appl. Phys. 49, 105108 (2016).

    Article  ADS  Google Scholar 

  23. R. D. Tomlinson, A. E. Hill, G. A. Stephens, M. Imanieh, P. A. Jones, R. D. Pilkington, P. Rimmer, M. Yakushev, and H. Neumann, in Proceedings of the  11th E. C. Photovoltaic Solar Energy Conference, Motreux, Switzerland, 1992, p. 791.

  24. M. V. Yakushev, R. D. Tomlinson, and H. Neumann, Cryst. Res. Technol. 29, 125 (1994).

    Article  Google Scholar 

  25. M. V. Yakushev, H. Neumann, R. D. Tomlinson, P. Rimmer, and G. Lippold, Cryst. Res. Technol. 29, 417 (1994).

    Article  Google Scholar 

  26. J. P. Biersack and L. G. Haggmark, Nucl. Instrum. Methods Phys. Res. 174, 257 (1980).

    Article  ADS  Google Scholar 

Download references

Funding

The study was supported by the Belarusian Republican Foundation of Basic Research, project no. F20M-058, state program of scientific research “Physical Material Science, New Materials and Technologies”, subprogram “Nanomaterials and Nanotechnologies”–2.56, and the Ministry of Education and Science of Russia, government order, project “Spin” no. AAAA-A18-118020290104-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Borodavchenko.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodavchenko, O.M., Zhivulko, V.D., Mudryí, A.V. et al. Radiative Recombination at Ion-Induced Defects in Cu(In,Ga)Se2 Alloy Thin Films. Semiconductors 55, 168–174 (2021). https://doi.org/10.1134/S1063782621020093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782621020093

Keywords:

Navigation